"Core	Competency"	Name (Print):	
(June 2022)			
Qualifying Exam	(06/07/2022)		
Time Limit: 4 ho	urs	Signature:	

This exam contains 8 problems. Answer all of them. Point values are in parentheses. You must show your work to get credit for your solutions — correct answers without work will not be awarded points. Please use separate sheet(s) for each question.

No calculators will be allowed in the exam. This is a closed notes/book exam; no cheat sheets are allowed.

1	12 pts	
2	12 pts	
3	12 pts	
4	16 pts	
5	16 pts	
6	10 pts	
7	12 pts	
8	10 pts	
TOTAL	100 pts	

- 1. (12 points) (6+6) Assume that observations X_1 and X_2 are jointly normally distributed with $E(X_1) = E(X_2) = \theta$, $Var(X_1) = 1$ and $Var(X_2) = 2$, where θ is the parameter of interest.
 - (i) Suppose that $Cov(X_1, X_2) = 0$. Among all unbiased estimators, find one which achieves the minimum variance. Justify your answer.
 - (ii) Suppose that $Cov(X_1, X_2) = 1$. Find an unbiased estimator with minimum variance. Justify your answer. Hint: k-variate normal density has the following form

$$f(x) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} \exp(-(x-\mu)^T \Sigma^{-1} (x-\mu)/2).$$

2. (12 points) (6+6) Let a positive random variable T have a hazard rate function of the form

$$\lambda(t) = \gamma t^{\gamma - 1}, \quad \gamma > 0.$$

- (i) Find its probability density function f and its median. (Hint: Recall that $\lambda(t) = f(t)/(1 F(t))$, where F is the cumulative distribution function.)
- (ii) Find its mean for the cases of $\gamma = 1$ and $\gamma = 2$.
- 3. (12 points) (6+6) Let Y be a standard d-dimensional normal random vector and let P be a $d \times d$ symmetric and idempotent matrix, i.e. $P = P^T$ and $P^2 = P$.
 - (i) Give all the possible values of the eigenvalues of P.
 - (ii) Show that $Y^T P Y \sim \chi^2(k)$ where $k = \operatorname{rank}(P)$.
- 4. (16 points) (4+4+4+4) A researcher conducts a completely randomized experiment to test a drug, with n subjects i=1,...n, n_{0+} of which are assigned to a control group, n_{1+} to a treatment group: let $X_i=0$ if subject i is in the control group, $X_i=1$ if i is in the treatment group. Let $Y_i=0$ if i does not improve, $Y_i=1$ if i improves. The researcher observes n_{00} subjects in the control group and n_{10} subjects in the treatment group with Y=0, n_{01} subjects in the control group and n_{11} subjects in the treatment group with Y=1. You may assume that both n_{0+} and n_{1+} are "large", that subjects in the control group are independent and identically distributed (iid) with $\Pr(Y=1 \mid X=0)=\pi_0$, subjects in the treatment group are iid with $\Pr(Y=1 \mid X=1)=\pi_1$. Let T_0 denote the number of successes in the control group, T_1 the number of successes in the treatment group.
 - (i) Write out the probability distribution $Pr(T_0 = n_{01}, T_1 = n_{11})$.
 - (ii) The researcher is interested in testing $H_0: \pi_0 = \pi_1$ vs. $H_A: \pi_0 \neq \pi_1$. As a test statistic, she uses: $\frac{p_1-p_0}{(\frac{p_1(1-p_1)}{n_{1+}}+\frac{p_0(1-p_0)}{n_{0+}})^{1/2}}$ where $p_0=n_{01}/n_{0+}$, $p_1=n_{11}/n_{1+}$ and compares this to the normal distribution with mean 0 and variance 1. Justify the use of this statistic.

- (iii) Construct the likelihood ratio test for H_0 vs. H_A above.
- (iv) The researcher is also interested in estimating the relative risk RR= $\Pr(Y=1 \mid X=1)/\Pr(Y=1) \mid X=0)$. What is the maximum likelihood estimator of RR?
- 5. (16 points) (4+4+4+4) Suppose that observations Y_i , i = 1, 2, 3, follow independent Poisson distributions with parameters λ_i .
 - (i) What is the distribution of $Y_1 + Y_2 + Y_3$? Justify.
 - (ii) The researcher believes $\lambda_i = i \times \lambda$ for all i = 1, 2, 3. How might you test $H_0 : \lambda_i = i \times \lambda$ for all i vs. $H_A : \lambda_i \neq i \times \lambda$ for some i?
 - (iii) Presuming the researcher's belief is correct, obtain the maximum likelihood estimator of λ .
 - (iv) Again, presuming the researcher's belief is correct, obtain the likelihood ratio test for $H_0: \lambda = \lambda_0$ vs. $H_A: \lambda \neq \lambda_0$.
- 6. (10 points) Suppose that $\widehat{\theta}$ has the *p*-dimensional normal distribution with expectation the vector all of whose components are zero and positive definite variance-covariance matrix Σ . Let $c(\widehat{\theta})$ be the value of c that maximizes

$$t = \frac{c^T \widehat{\theta}}{\sqrt{c^T \Sigma c}}.$$

Find the distribution of

$$t_{max} = \frac{c(\widehat{\theta})^T \widehat{\theta}}{\sqrt{c(\widehat{\theta})^T \Sigma c(\widehat{\theta})}}.$$

7. (12 points) Suppose that Y_{i1} , Y_{i2} , independent pairs of Bernoulli observations with expectations, respectively,

$$\frac{e^{\alpha_i+\beta}}{1+e^{\alpha_i+\beta}}$$
 and $\frac{e^{\alpha_i}}{1+e^{\alpha_i}}$,

i from 1 to n, where the α_i and β are unspecified parameters. Let $\widehat{\beta}$ be the maximum likelihood estimate of β . What is the limiting expectation of $\widehat{\beta}$ when the true value of β is 0.5 and the true values of α_i are all equal to 0? Hint: for each i, think about the four possibilities for (Y_{i1}, Y_{i2}) separately.

8. (10 points) Suppose we have a normal random sample X_1, \ldots, X_n such that $\mathbb{E}[X_i] = \mu$, and that we conduct a t-test with level α of the hypothesis $H_0: \mu = \mu_0$. Show that the t-test achieves an asymptotic level α when we have n independent $X_i \sim N(\mu, \sigma_i^2)$ if $0 < m \le \sigma_i \le M < \infty$ for all $i = 1, \ldots, n$, where m < M are positive constants that do not depend on n.