"Core Competency" (May 2020)	Name (Print):	
Qualifying Exam $(05/27/2020)$		
Time Limit: 4 hours	Signature:	

This exam contains 9 problems. Answer **all** of them. Point values are in parentheses. You **must show your work** to get credit for your solutions — correct answers without work will not be awarded points. Please use separate sheet(s) for each question.

No calculators will be allowed in the exam. This is a closed notes/book exam; no cheat sheets are allowed.

1	8 pts	
2	10 pts	
3	12 pts	
4	10 pts	
5	12 pts	
6	12 pts	
7	12 pts	
8	12 pts	
9	12 pts	
TOTAL	100 pts	

1. (8 points) Suppose we have a random variable $\xi \sim \text{Uniform}(0,1)$. Suppose that conditioning on ξ , we have i.i.d. Bernoulli(ξ) random variables $X_1, X_2, \ldots, X_n, X_{n+1}$, i.e. $P(X_i = 1|\xi) = 1 - P(X = 0|\xi) = \xi$. Calculate

$$P(X_{n+1} = 1 \mid X_1, X_2, \dots, X_n).$$

- 2. (10 points) (5+5) Let X_1, X_2, \ldots, X_n denote n independent and identically distributed observations from Uniform(0, 1). We order these observations according to their distance from x = 0.75 and call the ordered ones $X_{(1)}^x, X_{(2)}^x, \ldots, X_{(n)}^x$. Note that $X_{(1)}^x$ and $X_{(n)}^x$ are, respectively, the closest and farthest observations from x = 0.75.
 - (i) Prove that $X_{(1)}^x$ converges to 0.75 in probability.
 - (ii) What does $X_{(n)}^x$ converge to in probability? Prove your answer.
- 3. (12 points) (4+4+4) Suppose $N, \{X_i\}_{i\geq 1}$ are i.i.d. Poisson random variables with mean 1. Let $T = \sum_{i=1}^{N} X_i$.
 - (i) Compute expectation E(T).
 - (ii) Compute variance Var(T).
 - (ii) Find $\mathbb{P}(T=1)$ as explicitly as possible.
- 4. (10 points) (5+5) Let Z_1, Z_2, Z_3 be i.i.d. N(0,1) random variables. Let $R = \sqrt{Z_1^2 + Z_2^2 + Z_3^2}$.
 - (i) Find the distribution of R and write down its density function.
 - (ii) Suppose that we have two independent random variables $X \sim \text{Gamma}(\alpha, \lambda)$ and $Y \sim \text{Gamma}(\beta, \lambda)$, where $\alpha, \beta, \lambda > 0$. Let

$$U = X + Y$$
 and $V = \frac{X}{X + Y}$.

Find the joint density (p.d.f.) of (U, V) and identify the joint distribution (c.d.f.). **Hint**: density function of $\operatorname{Gamma}(\alpha, \lambda) = \lambda^{\alpha} x^{\alpha-1} e^{-\lambda x} / \Gamma(\lambda)$.

5. (12 points) (4+4+4) Suppose that X_1, \ldots, X_n are i.i.d. observations from the exponential distribution with parameter λ (recall that $\mathbb{E}(X_1) = \lambda^{-1}$). Consider the following testing problem:

$$H_0: \lambda = \lambda_0$$
 versus $H_1: \lambda = \lambda_1$,

where $0 < \lambda_1 < \lambda_0$. Let $f_0(X_1, \ldots, X_n)$ be the likelihood of the data under H_0 and $f_1(X_1, \ldots, X_n)$ that under H_1 .

(i) Show that $\log \frac{f_1(X_1,\ldots,X_n)}{f_0(X_1,\ldots,X_n)}$ is an increasing function of $\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$.

- (ii) Suppose that $c_{\alpha,n}$ is such that $\mathbb{P}_{\lambda_0}(\bar{X}_n \geq c_{\alpha,n}) = \alpha$, for $\alpha \in (0,1)$. Relate $c_{\alpha,n}$ to $q_k(\beta)$ the β 'th quantile of the χ_k^2 distribution (for some k).
- (iii) How would you test the hypothesis

$$H_0: \lambda = \lambda_0$$
 versus $H_1: \lambda < \lambda_0$?

Derive an expression for the power function of the test.

- 6. (12 points) (4+4+4) Suppose that we have single observation from X from the exponential distribution with parameter λ . Define T(X) = I(X > 1), where I is the indicator function. Set $\psi(\lambda) := e^{-\lambda}$.
 - (i) Show that T(X) is unbiased for $\psi(\lambda)$.
 - (ii) Find the (Fisher) information bound for unbiased estimators of $\psi(\lambda)$.
 - (iii) Show that the variance of T(X) is strictly larger than the information bound.
- 7. (12 points) (4+4+4) Consider the random variable $X = \mu + \sigma Z$, where $\mu \in \mathbb{R}$, $\sigma > 0$ and Z is a random variable with a density f. Suppose that μ and σ are unknown parameters and that the density f is known (completely specified). We have a random i.i.d sample X_1, \ldots, X_n with the same distribution as X.
 - (i) Propose unbiased estimators, $\hat{\mu}$ and $\hat{\sigma}^2$, of μ and σ^2 .
 - (ii) Does the joint distribution of $(X_i \hat{\mu})/\hat{\sigma}$ (i = 1, ..., n) depend on μ and σ ? Explain your answer.
 - (iii) For a given level $\alpha \in (0, 1)$, describe a way to construct a confidence interval for μ with exact coverage probability 1α .
- 8. (12 points) (4+4+4) Let X_1, \ldots, X_n be an i.i.d. Bernoulli(p) random sample, i.e. $P(X_i = 1) = 1 P(X_i = 0) = p, p \in (0, 1)$. Further let $\theta = Var(X_i)$.
 - (i) Find $\hat{\theta}$, the maximum likelihood estimator of θ .
 - (ii) Show that $\hat{\theta}$ is asymptotically normal when $p \neq \frac{1}{2}$ and give the asymptotic variance.
 - (iii) When $p = \frac{1}{2}$, derive a non-degenerated asymptotic distribution of $\hat{\theta}$ with an appropriate normalization. Hint: try relating $\hat{\theta}$ to the statistic $(\overline{X}_n 1/2)^2$
- 9. (12 points) (4+4+4) Let X_1, \ldots, X_{2n} be an i.i.d. random sample with common pdf $f(x) = \frac{1}{\lambda} e^{-\frac{1}{\lambda}x}$ for x > 0. Consider the three estimators $\hat{\lambda}_1 = \frac{1}{n} \sum_{i=1}^n X_i$, $\hat{\lambda}_2 = \frac{1}{n} \sum_{i=n+1}^{2n} X_i$ and $\hat{\lambda} = \frac{1}{2n} \sum_{i=1}^{2n} X_i$.

- (i) Show that $T_1 = \hat{\lambda}_1 \hat{\lambda}_2$ is an unbiased and consistent estimator of λ^2 .
- (ii) Show that $T_2 = \hat{\lambda}^2$ is consistent for λ^2 , but not unbiased.
- (iii) Derive the asymptotic distribution of the estimators T_1 and T_2 . Which one is more efficient asymptotically?