"Core Competency" (May 2021)	Name (Print):	
Qualifying Exam $(05/24/2021)$		
Time Limit: 4 hours	Signature:	

This exam contains 8 problems. Answer **all** of them. Point values are in parentheses. You **must show your work** to get credit for your solutions — correct answers without work will not be awarded points. Please use separate sheet(s) for each question.

No calculators will be allowed in the exam. This is a closed notes/book exam; no cheat sheets are allowed.

1	14 pts	
2	14 pts	
3	10 pts	
4	16 pts	
5	12 pts	
6	12 pts	
7	12 pts	
8	10 pts	
TOTAL	100 pts	

1. (14 points) (5+5+4) Let X_1, \ldots, X_n be an i.i.d. random sample with common density function

$$f(x) = \begin{cases} 3\theta^3 x^{-4} & \text{for } x \ge \theta \\ 0 & \text{otherwise,} \end{cases}$$

where $\theta > 0$ is an unknown parameter.

- (i) Apply the method of moments to obtain an unbiased estimator of θ .
- (ii) Find the maximum likelihood estimator (MLE) of θ and show that it is biased.
- (iii) Which of the above two estimators has a smaller mean squared error (MSE)?
- 2. (14 points) (5+5+4) Let X_1, X_2, \ldots, X_n from be an i.i.d. random sample Uniform $(0, \theta)$, where where $\theta > 0$ is an unknown parameter. Suppose that we want to test the following hypothesis:

$$H_0: 3 \le \theta \le 4$$
, versus $H_1: \theta < 3$ or $\theta > 4$. (1)

Let $Y_n = \max\{X_1, \dots, X_n\}$. Consider the following two tests:

$$\delta_1$$
: Reject H_0 if $Y_n \leq 2.9$ or $Y_n \geq 4$

and

$$\delta_2$$
: Reject H_0 if $Y_n \le 2.9$ or $Y_n \ge 4.5$.

- (i) Find the power functions of δ_1 and δ_2 , when $\theta \leq 4$.
- (ii) Find the power functions of δ_1 and δ_2 , when $\theta > 4$.
- (iii) Which of the two tests seems better for testing the hypothesis (1)?
- 3. (10 points) (5+5) A random sample X_1, \ldots, X_n is drawn from a population with p.d.f.

$$f_{\theta}(x) = \frac{1}{2}(1 + \theta x), \qquad x \in [-1, 1],$$

and $f_{\theta}(x) = 0$ if $x \notin [-1, 1]$, where $\theta \in [-1, 1]$ is the unknown parameter.

- (i) Find an unbiased estimator of θ .
- (ii) Is the estimator in (i) consistent? Provide a justification for your answer.
- 4. (16 points) (4+4+4+4) The joint pdf $f_{XY}(a,b)$ of random variables X and Y is zero outside the triangular region shown below and is equal to a fixed number γ on the triangular region. Answer the following questions:
 - (i) Calculate the value of γ .

- (ii) Are X and Y independent? Prove your answer and then give an intuitive explanation.
- (iii) Calculate cov(X, Y). Does the result you obtain make sense?
- (iv) Calculate the joint CDF of two random variables Z = X + Y and W = X Y.
- 5. (12 points) (4+4+4) Let X and Y be a pair of random variables with the following distributional specification: $P(Y=1)=1-P(Y=0)=\alpha$ where $\alpha \in (0,1)$, and $X|Y=0 \sim N(0,\sigma^2)$ and $X|Y=1 \sim N(\mu,\sigma^2)$.
 - (i) Find the conditional distribution of Y given X, i.e. P(Y = 1|X = x).
 - (ii) Suppose that we have an i.i.d. random sample from this population, i.e. we observe i.i.d. copies (X_i, Y_i) , i = 1, ..., n. Write down the likelihood function and find maximum likelihood estimators $\hat{\alpha}_n$, $\hat{\mu}_n$ and $\hat{\sigma}_n^2$ of α , μ and σ^2 .
 - (iii) What are the asymptotic distributions of $\hat{\alpha}_n$, $\hat{\mu}_n$ and $\hat{\sigma}_n^2$ (properly standardized)?
- 6. (12 points) (4+4+4) Suppose X_1, \dots, X_n are independent, with $X_i \sim N\left(\frac{\theta}{i}, 1\right)$. Here $\theta \in \mathbb{R}$ is an unknown parameter.
 - (i) Find an unbiased estimator $\hat{\theta}_n$ for θ which depends on the entire data.
 - (ii) Find asymptotic non-degenerate distribution of your estimator, i.e. $d_n(\hat{\theta}_n \theta)$ converges to a non-degenerate distribution.
 - (iii) Suppose that we impose a normal prior $\theta \sim N(0,\tau)$, where $\tau > 0$ is a known constant. Find the posterior distribution of θ given data X_1, \dots, X_n .
- 7. (12 points) (6+6) Suppose that $A = (a_{ij})_{1 \le i,j \le 2}$ is a 2 × 2 symmetric matrix, with $a_{11} = a_{22} = \frac{3}{4}$ and $a_{12} = a_{21} = \frac{1}{4}$.
 - (i) Find the eigenvalues and eigenvectors of the matrix A.
 - (ii) Compute $\lim_{n\to\infty} a_{12}^{(n)}$, where $a_{ij}^{(n)}$ denotes the (i,j)'s entry of matrix A^n .

8. (10 points) Daniel and Ann alternatively toss a fair coin. Daniel tosses the coin first, then Ann tosses the coin, then it is again Daniel's turn and so on. We record the sequence. If there is a head followed by a tail the game ends and the person who tosses the tail wins. What is the probability that Daniel wins the game?

Hint: Call the event of Daniel winning the game A, and let x = P(A). Also, let B denote the event that Daniel sees a Head in the first toss. Use the law of total probability to write down:

$$P(A) = P(A|B)P(B) + P(A|B^c)P(B^c).$$