
“Core Competency” (Fall 2018) Name (Print):
Qualifying Exam (09/04/2018)
Time Limit: 4 hours Signature:

This exam contains 9 problems. Answer all of them. Point values are in parentheses. You
must show your work to get credit for your solutions — correct answers without work
will not be awarded points.

No calculator will be allowed in the exam. This is a closed notes/book exam; no cheat sheets
are allowed. Normal tables, if needed, will be provided during the exam. Rough paper will
be provided to you.

1 7 pts

2 8 pts

3 10 pts

4 15 pts

5 15 pts

6 15 pts

7 8 pts

8 10 pts

9 12 pts

TOTAL 100 pts
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1. (7 points) Consider a routine screening test for a disease. Suppose the frequency of the
disease in the population (base rate) is 0.5%. The test is highly accurate with a 5% false
positive rate and a 10% false negative rate [a false positive happens when a test result
indicates that the disease is present (the result is positive), but it is, in fact, not present.
Similarly, a false negative happens when a test result indicates that the disease is not
present (the result is negative), but it is, in fact, present].

You take the test and it comes back positive. What is the probability that you have the
disease?
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2. (8 points) (4+4) We consider balls of random radius R.

(i) Suppose that R is uniformly distributed on [1, 10]. Find the probability density
function of the volume V of a ball. (Recall that V = 4

3
πR3.)

(ii) Suppose that R has a log-normal distribution, meaning that log(R) ∼ N (µ, σ2) for
some parameters µ ∈ R and σ > 0. Show that V also has a log-normal distribution
and find its parameters.



“Core Competency” Qualifying Exam - Page 4 of 14 2018

3. (10 points) (6 + 4) Suppose that, for n ≥ 1, Xn is a random variable taking values in
{ 1
n
, 2
n
, . . . , n

n
} with equal probability 1

n
.

(i) Show that Xn converge in distribution, as n→∞? What is its weak limit?

(ii) Let f : [0, 1] → R be defined as f(x) = x sin(x), for x ∈ [0, 1]. Using the above or
otherwise, show that

lim
n→∞

1

n

n∑
k=1

f

(
k

n

)
=

∫ 1

0

f(x) dx.
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4. (15 points) (5 + 4 + 6)

(i) Let X be a random variable and a ∈ R. Show that (using Markov’s inequality or
otherwise):

P[X ≥ a] ≤ inf
s≥0

e−sa E[esX ].

(ii) Let N be a Poisson random variable with parameter λ > 0; i.e.,

P[N = n] = e−λ
λn

n
, n ≥ 0.

Show that E[esN ] = eλ(e
s−1) for all s ∈ R.
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(iii) Let N be as in (ii) and let m ≥ λ be an integer. Use (i) and (ii) to show that

P[N ≥ m] ≤
(
λ

m

)m
em−λ.
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5. (15 points) (3 × 5) We obtain observations Y1, . . . , Yn which can be described by the
relationship

Yi = i× θ + εi,

where ε1, . . . , εn are i.i.d N(0, σ2); σ2 > 0. Here θ and σ2 are unknown.

(i) Find the least squares estimator θ̂ of θ; i.e., θ̂ = arg minθ∈R
∑n

i=1(Yi − iθ)2.

(ii) Is θ̂ unbiased?

(iii) Find the exact distribution of θ̂.
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(iv) Find the asymptotic (non-degenerate) distribution of θ̂ (properly normalized).

(v) How would you test the hypothesis H0 : θ = 0 versus H1 : θ 6= 0 (at level α ∈ (0, 1))?
Describe the test statistic and the critical value.
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6. (15 points) (3 + 5 + 3 + 4) Suppose that X1, X2, . . . , Xn are i.i.d N(θ, 1), where θ ∈ R
is unknown. Let ψ = Pθ(X1 > 0).

(a) Find the maximum likelihood estimator ψ̂ of ψ.

(b) Find an approximate 95% confidence interval for ψ.
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(c) Let Yi = 1{Xi > 0}, for i = 1, . . . , n. Define ψ̃ = (1/n)
∑n

i=1 Yi. Show that ψ̃ is a
consistent estimator of ψ.

(d) Find the asymptotic distribution of both the estimators? Which estimator of ψ, ψ̂
or ψ̃, is more preferable in this model and why?
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7. (8 points) (3+5) Suppose X1, . . . , Xn are i.i.d. with P(Xi = ±1) = 1
2
. Define

Yi :=
i∏

j=1

Xj, for i = 1, . . . , n.

(i) Find the joint distribution of (Y1, Y2).

(ii) Derive the limiting distribution of 1√
n

∑n
i=1 Yi.
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8. (10 points) (4+6) Suppose (X,Y) have a multivariate normal distribution with mean
vector 0 and covariance matrix

Σ =

[
A B
B> C

]
,

where A is m×m, B is m× n, and C is n× n, and A and C are non-singular. Define a
vector Z := Y −B>A−1X.

(i) Find the m× n covariance matrix of X and Z.

(ii) Express Y as Z + B>A−1X, and hence deduce the conditional distribution of Y
given X = x.
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9. (12 points) (6+6) Let X ∈ Rd be a centered normal random vectors and A ∈ Rd×d a
fixed symmetric matrix.

(i) Denote by Y an independent copy of X. Show that

X>AX − Y >AY =d 2X>AY.

Hint: (X ± Y )/
√

2 are i.i.d. random vectors following the same distribution as X.
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(ii) Show that for any t ≥ 0,

P(|X>AX − E(X>AX)| ≥ t) ≤ P(|X>AY | ≥ t).

Hint: First show that for two i.i.d. random variables Z1, Z2, P(|Z1 − Z2| ≥ 2t) ≥
P (|Z1| ≥ t).


