"Core Competency" (Sep. 2019)	Name (Print):	
Qualifying Exam $(09/03/2019)$		
Time Limit: 4 hours	Signature:	

This exam contains 8 problems. Answer **all** of them. Point values are in parentheses. You **must show your work** to get credit for your solutions — correct answers without work will not be awarded points.

No calculators will be allowed in the exam. This is a closed notes/book exam; no cheat sheets are allowed. Normal tables, if needed, will be provided during the exam. Rough paper will be provided to you.

1	8 pts	
2	15 pts	
3	10 pts	
4	18 pts	
5	12 pts	
6	10 pts	
7	10 pts	
8	17 pts	
TOTAL	100 pts	

- 1. (8 points) (3+5)
 - (i) Suppose that X is a nonnegative random variable. Show that

$$\mathbb{P}(X > t) \le \frac{\mathbb{E}X}{t}$$
, for any $t > 0$.

(ii) Suppose that $Y \sim N(0,1)$. Show that

$$\mathbb{P}(Y > t) \le e^{-t^2/2}, \quad \text{for any } t > 0.$$

Hint: You can assume without proof that $\mathbb{E}[e^{\lambda Y}] = e^{\lambda^2/2}$ for all $\lambda \in \mathbb{R}$.

2. (15 points) (5+5+5)

(i) Let X be a random variable distributed according to an exponential law with expectation $1/\lambda$, where λ is a positive constant. Given the real positive random variable X, let us define the discrete variable $Y = \lceil X \rceil$, where $\lceil \cdot \rceil$ is the ceiling function, i.e., the function which rounds any real number upwards to the closest integer. For instance, $\lceil 14.3 \rceil = 15$ and $\lceil 14.8 \rceil = 15$. Show that the random variable Y follows a geometric distribution and identify the parameter.

(ii) Show that for any continuous random variable W with a strictly increasing cumulative distribution function F, we have that $F(W) \sim \text{Uniform}[0, 1]$.

(iii) Using this results of (i) and (ii), propose an algorithm to simulate a realization of the geometric random variable in (i) from $U \sim \text{Uniform}([0, 1])$.

3. (10 points) Suppose that X_n and Y_n are independent random variables, where X_n is asymptotically normal with mean 4 and standard deviation $1/\sqrt{n}$, (i.e., $\sqrt{n}(X_n-4) \stackrel{d}{\to} N(0,1)$) and Y_n is asymptotically normal with mean 3 and standard deviation $2/\sqrt{n}$. Use the delta method to get an approximate mean and standard deviation of Y_n/X_n .

- 4. (18 points) (5+6+7) Let X_1, \ldots, X_n be a random sample (i.i.d.) from a density function f. The corresponding CDF is denoted by F. Denote by $X_{(1)} < \cdots < X_{(n)}$ the order statistics, i.e., a rearrangement of X_1, \ldots, X_n according to their values.
 - (i) For n = 2, derive the density function of $X_{(1)}$ in terms of f and F. [**Hint**: You may want to find the distribution function of $X_{(1)}$ first.]

(ii) For n=3, derive the density function of $X_{(2)}$ in terms of f and F.

(iii) For any n and k, derive the density function of $X_{(k)}$ in terms of f and F.

- 5. (12 points) (6+6) Let X_1, \ldots, X_n be the number of accidents at an important intersection in the past n years. We are interested in estimating the probability of zero accidents next year. We model the X_i 's as independent random variables distributed according to a Poisson distribution with mean λ .
 - (i) Let $q(\lambda)$ be the probability that there will be no accidents next year. Find an unbiased and consistent estimator of $q(\lambda)$.

(ii) Compute the maximum likelihood estimator of $q(\lambda)$ and derive its asymptotic distribution. Compare this estimator with the one obtained in (i).

6. (10 points) Suppose that X_1, X_2, \ldots are i.i.d. having an exponential distribution with mean 1. Show that

$$\frac{\max_{1 \le k \le n} X_k}{\log n} \xrightarrow{p} 1 \quad \text{as } n \to \infty$$

where \xrightarrow{p} denotes convergence in probability.

- 7. (10 points) (4+6) Suppose that X_1, \ldots, X_n are i.i.d. uniform random variables on $[0, \theta]$ for some $\theta \in [1, 2]$.
 - (i) What is the MLE of θ ?

(ii) Suppose that, instead of X_i 's, we only observe, for all $i=1,\ldots,n,$

$$Y_i = \begin{cases} X_i & \text{if } X_i \le 1\\ 0 & \text{otherwise.} \end{cases}$$

What is the MLE of θ based on $\{Y_1, \ldots, Y_n\}$?

- 8. (17 points) (8+6+3) Suppose that a measurement Y is recorded with a $N(\theta, \sigma^2)$ sampling distribution, with σ known and θ known to lie in the interval [0, 1] (but otherwise unknown). Consider two point estimators of θ : (a) the posterior mean $\hat{\theta}_B$ based on the assumption of a uniform prior distribution on θ on [0, 1], and (b) the maximum likelihood estimate $\hat{\theta}_M$, restricted to the range [0, 1].
 - (i) Show that, as $\sigma \to \infty$, $\hat{\theta}_B$ converges in distribution (to Y_1 , say). Identify the limit Y_1 . [**Hint**: You may first find the distribution of $\Theta|Y=y$ and then take limits.]

(ii) Show that, as $\sigma \to \infty$, $\hat{\theta}_M$ converges in distribution (to Y_2 , say). Identify the limit Y_2 .

(iii) If σ is large enough, which estimator $\hat{\theta}_M$ or $\hat{\theta}_B$ has a higher mean squared error, for any value of θ in [0,1]. You may answer this question by comparing the mean squared errors or Y_1 and Y_2 for estimating θ .