
June 22 Exam Solutions

1 Problems

Problem 1. Assume that observations X1 and X2 are jointly normally distributed with E[X1] = E[X2] = θ, Var(X1) = 1 and
Var(X2) = 2, where θ is the parameter of interest.

(i) Suppose that Cov(X1, X2) = 0. Among all unbiased estimators, find one which achieves the minimum variance. Justify
your answer.

(ii) Suppose that Cov(X1, X2) = 1. Find an unbiased estimator with minimum variance. Justify your answer. Hint: k-variate
normal density has the following form:

f(x) =
1√

(2π)k|Σ|
exp

(
−(x− µ)TΣ−1(x− µ)/2

)
.

Solution 1

(i) The Fisher information based on the sample (X1, X2) is 3/2 so that the minimum variance is 2/3. We consider a
linear estimator of the form aX1 + bX2 so that for it to be unbiased and have variance 2/3 we must have a+ b = 1
and a2 + 2b2 = 2/3. This has solution a = 2/3 and b = 1/3.

(ii) In this case, we find the Fisher information is 1 so that the minimum variance is 1. The unbiased estimator X1

achieves this variance.

Problem 2. Let a positive random variable T have a hazard rate function of the form

λ(t) = γtγ−1, γ > 0.

(i) Find its probability density function f and its median. (Hint: recall that λ(t) = f(t)/(1− F (t)) where F is the cumulative
distribution function).

(ii) Find its mean for the cases of γ = 1 and γ = 2.

Solution 2

(i) Notice that γtγ−1 = ∂
∂t t

γ . On the other hand, we can also observe that λ(t) = ∂
∂t − log(1− F (t)), where F (t) is the

cdf of T . Thus, we have tγ = − log(1− F (t)) meaning F (t) = 1− exp(−tγ) and f(t) = exp(−tγ) · γtγ−1. The median is
then the solution to 1− exp(−tγ) = 1/2 which is log(2)1/γ .

(ii) The mean is the integral
∫∞
0

γ · tγ−1 · e−tγ · t dt. For γ = 1, this reduces to the mean of an exp(1) random variable
which is 1. For γ = 2, the integral becomes

∫∞
0

2 · t2 · e−t2 dt =
√
π/2 using properties of the standard normal pdf.

Problem 3. Let Y be a standard d-dimensional normal random vector and let P be a d× d symmetric and idempotent matrix,
i.e. P = PT and P 2 = P .

(i) Give all the possible values of the eigenvalues of P .

(ii) Show that Y TPY ∼ χ2(k), where k = rank(P ).
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Solution 3

(i) See the solution to Problem 20 in Review Doc 1.

(ii) This is the 2018 Summer Practice Exam Problem 10 (see Review Doc 4, Problem 1).

Problem 4. A researcher conducts a completely randomized experiment to test a drug, with n subjects i = 1, . . . , n, n0+ of which
are assigned to a control group, n1+ to a treatment group. Let Yi = 0 if i does not improve, Yi = 1 if i improves. The researcher
observes n00 subjects in the control group and n10 subjects in the treatment group with Y = 0, n01 subjects in the control group
and n11 subjects in the treatment group with Y = 1. You may assume that both n0+ and n1+ are “large”, that subjects in the
control group are independent and identically distributed (iid) with P(Y = 1|X = 0) = π0, subjects in the treatment group are
iid with P(Y = 1|X = 1) = π1. Let T0 denote the number of successes in the control group, T1 the number of successes in the
treatment group.

(i) Write out the probability distribution P(T0 = n01, T1 = n11)

(ii) The researcher is interested in testing H0 : π0 = π1 vs. HA : π0 ̸= π1. As a test statistic, she uses p1−p0(
p1(1−p1)

n1+
+

p0(1−p0)
n0+

)1/2 , where

p0 = n01/n0+, p1 = n11/n1+ and compares this to the normal distribution with mean 0 and variance 1. Justify the use of this
statistic.

(iii) Construct the likelihood ratio test for H0 vs. HA above.

(iv) The researcher is also interested in estimating the relative risk RR = P(Y = 1|X = 1)/P(Y = 1|X = 0). What is the maximum
likelihood estimator of RR?

Solution 4

1. P(T0 = n01, T1 = n11) =
(
n0+

n01

)
πn01
0 · (1− π0)

n00 ·
(
n1+

n11

)
πn11
1 · (1− π1)

n10 .

2. We claim the test statistic converges to N (0, 1) in distribution under the null hypothesis. This means the test is
pretty good since n0+, n1+ are both “large”. Let π = π0 = π1. Note that we can first rewrite the statistic as

√
n1+(p1 − π)

(p1(1− p1) + p0(1− p0) · (n1+/n0+))1/2
+

√
n0+(p0 − π)

(p0(1− p0) + p1(1− p1) · (n0+/n1+))1/2
.

To make life easier, let’s first assume n1+/n0+
n1+,n0+→∞−→ c ∈ R>0. Then, by the continuous mapping theorem, the

denominator of the first term goes to
√
(π(1− π) · (1 + c) so that by CLT and Slutsky, the first term in the sum

above goes to N (0, (1 + c)−1). Similarly, the second term goes to N (0, c(1 + c)−1). Thus, the sum goes to N (0, 1) in
distribution.

In fact, essentially the same argument would have worked if limn1+,n0+→∞ n1+/n0+ = 0 or +∞ since then the first
term in the sum above goes to N (0, 1) while the second term goes to 0 (or vice-versa).

In fact, this will be enough to show the desired convergence result for general sequences {(n0+, n1+)}. In particular,
a subsequence argument will allow us to remove the assumption that n1+/n0+ converges or diverges. To do so, we
need to consider an alternative characterization of convergence in distribution in terms of subsequences.

Claim: Xn
d−→ X if every subsequence {Xnk

}k ⊆ {Xn}n has a further subsequence {Xnm}m ⊆ {Xnk
}k such that

Xnm

d−→ X as m → ∞. This claim can be proven using the Portmanteau theorem.

Next, recall from real analysis that any sequence of real numbers has a monotone subsequence. Thus, for any
sequence of values n1+/n0+, we can find a monotonic subsequence in which case n1+/n0+ → c ≥ 0 or n1+/n2 → +∞
since the sequence is positive. Combining this fact with our claim aboves gives us the desired convergence result
for all sequences {(n1+, n0+)}.

3. The MLE under H0 for π = π0 = π1 is n01+n11

n0++n1+
since all the data is iid. The unconstrained MLE for (π0, π1) is (p0, p1)

where p0, p1 are defined as in (ii). Plugging these into the likelihood from (i) and taking the ratio gives us the
likelihood ratio test statistic.
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4. By functional invariance of the MLE, the MLE for RR = π1/π0 must be p1/p0.

Problem 5. Suppose that observations Yi, i = 1, 2, 3, follow independent Poisson distributions with parameters λi.

(i) What is the distribution of Y1 + Y2 + Y3? Justify.

(ii) The researcher believes λi = i× λ for all i = 1, 2, 3. How might you test H0 : λi = i× λ for all i vs. HA : λi ̸= i× λ for some i?

(iii) Presuming the researcher’s belief is correct, obtain the maximum likelihood estimator of λ.

(iv) Again, presuming the researcher’s belief is correct, obtain the likelihood ratio test for H0 : λ = λ0 vs. HA : λ ̸= λ0.

Solution 5

(i) The mgf of Y1 + Y2 + Y3, by independence, is the product of the mgf’s of Y1, Y2, Y3. This is

exp
(
(λ1 + λ2 + λ3)(e

t − 1)
)
,

which is the mgf of a Poisson distribution with parameter λ1 + λ2 + λ3.

(ii) We can use the likelihood ratio test. The joint likelihood under H0 is

L(λ|Y1, Y2, Y3) =
λY1+Y2+Y3e−6λ2Y23Y3

Y1!Y2!Y3!
.

So that taking log and derivatives gives us the MLE for λ under H0 is Y1+Y2+Y3

6 . Meanwhile, the unconstrained MLE
for (λ1, λ2, λ3) is just (Y1, Y2, Y3). Plugging these into the likelihood above give us the likelihood ratio test statistic.

(iii) See (ii).

(iv) Here, the unconstrained MLE for λ is λMLE = Y1+Y2+Y3

6 , so that L(λ0|Y1, Y2, Y3)/L(λMLE|Y1, Y2, Y3) is the likelihood ratio
test statistic.

Problem 6. Suppose that θ̂ has the p-dimensional normal distribution with expectation the vector all of whose components are
zero and positive definite variance-covariance matrix Σ. Let c(θ̂) be the value of c that maximizes

t =
cT θ̂√
cTΣc

.

Find the distribution of
tmax =

c(θ̂)T θ̂√
c(θ̂)TΣc(θ̂)

.

Solution 6
First, we note that objective function t, is invariant under positive scalar multiplication of c. Thus, we can assume WLOG
that cTΣc = 1. Then, c(θ̂) just maximizes cT θ̂ which means c is the vector on the ellipse {c : cTΣc = 1} parallel to θ̂. Let
c = α · θ̂. Then, since cTΣc = α2θ̂TΣθ̂ = 1, we must have α =

√
1

θ̂TΣθ̂
. Thus,

tmax = αθ̂T θ̂ =
θ̂T θ̂√
θ̂TΣθ̂

.

Letting θ̂ = Σ1/2z where z ∼ N (000p, Id), we have

tmax =
zTΣz√
zTΣ2z

.
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Problem 7. Suppose that Yi1, Yi2, independent pairs of Bernoulli observations with expectations, respectively,
eαi+β

1 + eαi+β
and eαi

1 + eαi
,

i from 1 to n, where αi and β are unspecified parameters. Let β̂ be the maximum likelihood estimate of β. What is the limiting
expectation of β̂ when the true value of β is 0.5 and the true values of αi are all equal to 0? Hint: for each i, think about the four
possibilities for (Yi1, Yi2) separately.

Solution 7
The log-likelihood is (after simplifying some terms):

L(β, {αi}i|{Yi1, Yi2}i) =
n∑

i=1

Yi1 · (αi + β) + Yi2 · αi − log(1 + eαi+β)− log(1 + eαi). (1)

We first fix a value of β and consider maximizing with respect to αi for a fixed i. There are four cases depending on the
values of Yi1, Yi2.

(a) First, suppose that Yi1 = Yi2 = 0. Then, the summand in (1) simplifies to:

log

(
1

(1 + eαi+β)(1 + eαi)

)
,

which, for any β, is increasing with decreasing αi. Thus, the maximizer of the above for any fixed β, is αi = −∞. We
note the maximum value of the i-th summand in (1) in this case is log(1) = 0.

(b) Next, suppose Yi1 = Yi1 = 1. Then, the part of the log-likelihood depending on αi is

2αi + β − log(1 + eαi+β)− log(1 + eαi). (2)

First, we note that the derivative of the above with respect to αi is

2− eαi+β

1 + eαi+β
− eαi

1 + eαi
,

which is positive for all αi, β ∈ R. Thus, the log-likelihood is increasing in αi in this case which means the maximizer
with respect to αi is αi = +∞. Next, we compute the limit of (2) as αi → +∞. We rewrite (2) as

log

(
e2αi+β

(1 + eαi)(1 + eαi+β)

)
,

so that taking αi → +∞ the ratio above goes to 1 which means the log-likelihood goes to 0.

(c) Suppose Yi1 = 1 and Yi2 = 0. In this case, our likelihood is

αi + β − log(1 + eαi+β)− log(1 + eαi).

For this case, we can proceed as usual and take the derivative with respect to αi and set it equal to 0. Omitting the
details of this, we will find the maximizer of the above is at αi = −β/2.

(d) Consider the case where Yi1 = 0 and Yi2 = 1, for which the likelihood is

αi − log(1 + eαi+β)− log(1 + eαi).

This has the same derivative with respect to αi as in the last case, so again our maximizer is αi = −β/2.

Putting all the cases together, letting α̂i be the maximizer with respect to αi (whose value we allow to possibly be ±∞),
we have:

L(β, {α̂i}i) =
n∑

i=1

111{Yi1 = 1, Yi2 = 0} log
(

eβ/2

(1 + eβ/2)(1 + e−β/2)

)
+111{Yi1 = 0, Yi2 = 1} log

(
e−β/2

(1 + eβ/2)(1 + e−β/2)

)
.
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Let N1 :=
∑n

i=1 111{Yi1 = 1, Yi2 = 0} and N2 :=
∑n

i=1 111{Yi1 = 0, Yi2 = 1}. Then, we have the above is

β

2
(N1 −N2)− (N1 +N2)

(
log(1 + eβ/2) + log(1 + e−β/2)

)
.

Taking derivative of the above with respect to β and setting equal to 0, a quadratic with respect to eβ/2 will appear which
we can solve for β getting (detailed omitted):

βMLE = 2 log

(
N1

N2

)
.

Since N1/n
P−→ P(Yi1 = 1, Yi2 = 0) = e1/2

2(1+e1/2)
and N2/2

P−→ P(Yi1 = 0, Yi2 = 1) = 1
2(1+e1/2)

by LLN, the continuous mapping
theorem tells us that βMLE goes to 1.

Note that, if N2 = 0, it is easy to check βMLE = ∞ since the log-likelihood is increasing in β. Thus, we can always consider
βMLE = 2 log(N1/N2) with the convention “log(∞) = ∞”. Since N2 = 0 occurs with probability tending toward zero, we still
have βMLE

d−→ 1 when defined this way.

Problem 8. Suppose we have a normal random sample X1, . . . , Xn such that E[Xi] = µ, and that we conduct a t-test with level α
of the hypothesis H0 : µ = µ0. Show that if the t-test achieves an asymptotic level α when we have n independent Xi ∼ N (µ, σ2

i )
if 0 < m ≤ σi ≤ M < ∞ for all i = 1, . . . , n, where m < M are positive constants that do not depend on n.

Solution 8
It suffices to show the Student’s t-statistic converges in distribution to N (0, 1). WLOG, we may assume µ0 = 0 since we
can recenter each Xi by Xi − µ0. So, under the null hypothesis, our test statistic is distributed as

√
n
(
1
n

∑n
i=1 Zi · σi

)√
1

n−1

(∑n
i=1 Zi · σ2

i −
(
1
n

∑n
i=1 Zi · σi

)2 · n) ,
whereZ1, . . . , Zn

i.i.d.∼ N (0, 1). Note that I wrote the sample variance in the denominator using the formulaS2 =
∑

i x
2
i−n·x2

n,
which will serve more convenient later when taking limits.

We first observe that:
1√∑n
i=1 σ

2
i

n∑
i=1

Zi · σi ∼ N (0, 1), (3)

since
∑n

i=1 Zi · σi ∼ N
(
0,
∑n

i=1 σ
2
i

)
. Then, it suffices to show the sample variance behaves like 1

n

∑n
i=1 σ

2
i in the limit. In

particular, by Slutsky, it suffices to show that:∑n
i=1 Z

2
i · σ2

i −
(
1
n

∑n
i=1 Zi · σi

)2 · n∑n
i=1 σ

2
i

d−→ 1.

(3) already tells us that the second term in the difference above goes to 0:(
1
n

∑n
i=1 Zi · σi

)2 · n∑n
i=1 σ

2
i

=

(
1√∑n
i=1 σ

2
i

n∑
i=1

Zi · σi

)2

· 1
n

d−→ 0,

by Slutsky. Thus, it suffices to show ∑n
i=1 Z

2
i · σ2

i∑n
i=1 σ

2
i

d−→ 1.

This will essentially follow from the law of large numbers for triangular arrays. I’ll write out the key steps: first observe by
Chebyshev that for any ϵ > 0:

P
(∣∣∣∣∑n

i=1 Z
2
i σ

2
i∑n

i=1 σ
2
i

− 1

∣∣∣∣ ≥ ϵ

)
≤

Var
(∑n

i=1 Z
2
i · σ2

i

)
ϵ2 · (

∑n
i=1 σ

2
i )

2 ∝
∑n

i=1 σ
4
i

ϵ · (
∑n

i=1 σ
2
i )

2 .
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Then, it suffices to show this last RHS goes to 0 as n → ∞. Alternatively, we can show the reciprocal of the RHS above
goes to ∞. We have (∑n

i=1 σ
2
i

)2∑n
i=1 σ

4
i

= 1 +

∑
i̸=j σ

2
i σ

2
j∑n

i=1 σ
4
i

> 1 +
n(n− 1) ·m4

n ·M4

n→∞−→ ∞.
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