Practice "Core Competency"	Name (Print):
Qualifying Exam (Summer	,
2018)	

This exam contains 19 problems. Answer all of them. Point values are in parentheses. You **must show your work** to get credit for your solutions — correct answers without work will not be awarded points. This is a closed book/notes exam. No calculators will be allowed in the exam.

1. (10 points) Consider a routine screening test for a disease. Suppose the frequency of the disease in the population (base rate) is 0.5%. The test is highly accurate with a 5% false positive rate and a 10% false negative rate [a false positive happens when a test result indicates that the disease is present (the result is positive), but it is, in fact, not present. Similarly, a false negative happens when a test result indicates that the disease is not present (the result is negative), but it is, in fact, present].

You take the test and it comes back positive. What is the probability that you have the disease?

- 2. (15 points) (5+5+5) Suppose that X_1, \ldots, X_n are i.i.d $\operatorname{Exp}(1/\mu)$, where $\mathbb{E}(X_1) = \mu > 0$.
 - (i) Find the mean and variance of $\bar{X}_n = \sum_{i=1}^n X_i/n$. Hence, find the asymptotic distribution of \bar{X}_n (properly standardized).
 - (ii) Let $T = \log \bar{X}_n$. Find the corresponding asymptotic distribution of T (properly standardized).
 - (iii) How can the asymptotic distribution of T be used to construct an approximate $(1-\alpha)$ confidence interval (CI) for μ ? Explain your answer and give the desired CI.
- 3. (10 points) (6 + 4) Let W_1, W_2, \ldots, W_k be unbiased estimators of a parameter θ with $Var(W_i) = \sigma_i^2$ and $Cov(W_i, W_j) = 0$ if $i \neq j$.
 - (a) Show that among all estimators of the form $\sum_{i=1}^k a_i W_i$, where a_i 's are constants and $\mathbb{E}_{\theta}(\sum_i a_i W_i) = \theta$, the estimator $W^* = \frac{\sum_i W_i/\sigma_i^2}{\sum_i 1/\sigma_i^2}$ has minimum variance.
 - (b) Show that $Var(W^*) = \frac{1}{\sum_i 1/\sigma_i^2}$.
- 4. (10 points) Suppose that the radius of a circle is a random variable having the following probability density function:

$$f(x) = \frac{1}{8}(3x+1), \qquad 0 < x < 2$$

and 0 otherwise. Determine the probability density function of the area of the circle.

5. (10 points) (5+5) Suppose that Y_1, \ldots, Y_n are i.i.d Poisson $(\lambda), \lambda > 0$ unknown. Assume that n is even, i.e., n = 2k for some integer k. Consider

$$\hat{\lambda} = \frac{1}{2k} \sum_{i=1}^{k} (Y_{2i} - Y_{2i-1})^2.$$

- (a) Is $\hat{\lambda}$ an unbiased estimator of λ (show your steps)?
- (b) Is $\hat{\lambda}$ a consistent estimator of λ , as $k \to \infty$ (show your steps)?

6. (20 points) (7+7+6) Consider observed response variables $Y_1, \ldots, Y_n \in \mathbb{R}$ that depend linearly on covariates x_1, \ldots, x_n as follows:

$$Y_i = \beta x_i + \epsilon_i$$
, for $i = 1, \dots, n$.

Here, the ϵ_i 's are independent Gaussian noise variables, but we do not assume they have the same variance. Instead, they are distributed as $\epsilon_i \sim N(0, \sigma_i^2)$ for possibly different variances $\sigma_1^2, \ldots, \sigma_n^2$. The unknown parameter of interest is β .

- (a) Suppose that the error variances $\sigma_1^2, \ldots, \sigma_n^2$ are all known. Find the MLE $\hat{\beta}$ for β in this case and derive an explicit formula for $\hat{\beta}$. Show that $\hat{\beta}$ minimizes a certain weighted least-squares criterion.
- (b) Show that the estimate $\hat{\beta}$ in part (a) is unbiased, and derive a formula for the variance of $\hat{\beta}$ in terms of $\sigma_1^2, \ldots, \sigma_n^2$ and x_1, \ldots, x_n .
- (c) Compute the Fisher information $I(\beta)$ in this model (still assuming $\sigma_1^2, \ldots, \sigma_n^2$ are known constants). Compare this value with the variance of $\hat{\beta}$ derived in part (b).
- 7. (10 points) (7+3) Suppose that $X \sim \text{Poisson}(\lambda)$ and its parameter $\lambda > 0$ has a prior distribution $\text{Gamma}(\alpha, \beta)$ given by density

$$f(y|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} e^{-y\beta} y^{\alpha-1}$$
, for $y \ge 0$, (and 0 otherwise).

- (a) Find the posterior distribution of λ given the observation X, and identify the distribution with its parameters.
- (b) Find the mean of this posterior distribution.
- 8. (16 points) (4×4) Suppose $X_1, X_2 \stackrel{i.i.d.}{\sim} Ber(p)$ for some unknown parameter $p \in (0, 1)$. Find an unbiased estimator for the following functions of p, if there exists one.
 - (a) g(p) = 2p.
 - (b) g(p) = p(1-p).
 - (c) $g(p) = p^2$.
 - (d) $g(p) = p^3$.
- 9. (10 points) (2+8) Suppose X_1, X_2 are i.i.d. random variables from a distribution with 0 and variance 1.
 - (a) If F = N(0, 1), show that $\frac{X_1 + X_2}{\sqrt{2}} \stackrel{d}{=} X_1$.
 - (b) Now suppose that $\frac{X_1+X_2}{\sqrt{2}} \stackrel{d}{=} X_1$. Show that F = N(0,1).
- 10. (9 points) Suppose that $X_1, \dots, X_n \overset{i.i.d.}{\sim} N(0,1)$, and A is a $n \times n$ matrix which is symmetric (i.e., $A^{\top} = A$) and idempotent (i.e., $A^2 = A$). Find the distribution of $\sum_{i,j=1}^{n} X_i X_j A(i,j)$. Assume if necessary that $\sum_{i=1}^{n} A(i,i) = s$.

- 11. (15 points) (4+5+6) Suppose that $X_1, \dots, X_n \stackrel{i.i.d.}{\sim} Ber(\lambda/n)$.
 - (a) What is the distribution of $\sum_{i=1}^{n} X_i$.
 - (b) Compute $\lim_{n\to\infty} \mathbb{P}(\sum_{i=1}^n X_i = k)$, where k is any fixed nonnegative integer, and hence show that $\sum_{i=1}^n X_i$ converges in distribution to a random variable Y.
 - (c) Compute $\mathbb{E}[Y(Y-1)]$, where Y is as in part (b).
- 12. (15 points) (5+4+6) Suppose that $U_1, U_2 \stackrel{i.i.d.}{\sim} U(0,1)$. Let $V_1 := \max(U_1, U_2), V_2 := \min(U_1, U_2)$.
 - (a) Find $\mathbb{P}(V_1 \geq x, V_2 \leq y)$, where $x, y \in [0, 1]$.
 - (b) Hence or otherwise find the joint density for (V_1, V_2) .
 - (c) Hence or otherwise compute $\mathbb{E}(V_1^2 + V_2^2)$.
- 13. (15 points) (5×3) Suppose $X_1, X_2, X_3 \stackrel{i.i.d.}{\sim} N(0,1)$. Let (Y_1, Y_2, Y_3) be defined as follows:

$$\begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

- (a) Find the joint distribution of (Y_1, Y_2, Y_3) .
- (b) Show that $Y_1^2 + Y_2^2 + Y_3^2 = X_1^2 + X_2^2 + X_3^2$.
- (c) Hence or otherwise derive the distribution of $(X_1 \bar{X})^2 + (X_2 \bar{X})^2 + (X_3 \bar{X})^2$, where $\bar{X} := \frac{X_1 + X_2 + X_3}{3}$.
- 14. (20 points) (3+3+6+3+5) Suppose $f:[0,\infty)\mapsto\mathbb{R}$ be a function such that f(x+y)=f(x)f(y).
 - (a) Show that $f(x) \ge 0$ for all real $x \ge 0$.
 - (b) Show that $f(0) \in \{0, 1\}$.
 - (c) Show that for any nonnegative rational number r one has $f(r) = c^r$, where $c \in [0, \infty)$.
 - (d) If f is assumed to be continuous, show that $f(x) = c^x$ for all real $x \ge 0$.
 - (e) Suppose X is a nonnegative random variable, such that

$$\mathbb{P}(X > s + t) = \mathbb{P}(X > s)\mathbb{P}(X > t)$$

for every $s, t \geq 0$. If X has a continuous distribution function, name the distribution of X.

- 15. (10 points) (6+4) Suppose X is a random variable taking values in [0,1].
 - (a) Show that $Var(X) \leq \frac{1}{4}$.

- (b) Find a random variable X for which equality holds in part (a).
- 16. (10 points) Farmers in the Hudson Valley pack apples into bags of approximately 10 pounds, but due to the variation in apples the actual weight varies. We may model the weight of a bag as uniformly distributed in [9.5, 10.5] and independent of other bags. The farmers load 1200 bags onto a truck with maximal admissible load of 13000 pounds. Find a simple approximation to the probability that the truck is overloaded, expressed in terms of the Normal distribution.
- 17. (15 points) (4+4+4+3) Let X and Y be i.i.d. $\mathcal{N}(0,1)$ random variables. Consider

$$Z := sign(Y) \cdot X$$

where sign(y) := 1 if y > 0 and sign(y) := -1 if $y \le 0$.

- (i) Find the distribution of Z.
- (ii) Compute the covariance of X und Z.
- (iii) Determine P[X + Z = 0].
- (iv) Are X and Z independent? (Give a precise mathematical argument.)
- 18. (10 points) Suppose Σ is a non negative definite matrix of size $n \times n$ with real entries. Show that $\operatorname{tr}(\Sigma^2) \geq n \det(\Sigma)^{2/n}$.
- 19. (10 points) Suppose for every $n \ge 1$ A_n is a real symmetric matrix of size $n \times n$, whose eigenvalues $(\lambda_1, \dots, \lambda_n)$ satisfies the following properties:
 - (i) $\max_{i=1}^n |\lambda_i| \stackrel{n \to \infty}{\to} 0.$
 - (ii) $\sum_{i=1}^{n} \lambda_i^2 = 1$.

Find the asymptotic distribution of $\sum_{i,j=1}^{n} A_n(i,j)X_iX_j$, where $\{X_i\}_{i\geq 1}$ is a sequence of i.i.d. N(0,1).