
Review Session 1 – Linear Algebra

References/suggested reading

(i) Introduction to Linear Algebra, by Gilbert Strang.

(ii) Linear Algebra Done Right, by Sheldon Axler.

(iii) Numerical Linear Algebra, by Trefethen and Bau.

1 Linear dependence, rank, and null space

Recall a (real) vector space V is a set of objects called vectors, equipped with two operations: addition and multiplication by real
scalars. These operations obey standard axioms (e.g., associativity, commutativity, distributivity of scalar multiplication) and
behave as one would expect. The standard example is Rd. Supposing V is a real vector space, let’s review some of the basic
terminology:

1. Vectors v1, . . . , vk ∈ V are said to be linearly independent if α1v1 + · · ·+ αkvk = 0 =⇒ α1 = · · · = αk = 0. We can write this
more compactly using matrix notation: the columns of A = (v1, . . . , vk) are linearly independent if Aα = 0 =⇒ α = 0.
Equivalently, Aα ̸= 0 for all nonzero α.

2. The dimension of a vector space V is the maximum number of linearly independent vectors in V .

3. The span Span{v1, . . . , vn} of a set of vectors v1, . . . , vn ∈ V is the linear subspace {
∑n

i=1 αivi : αi ∈ R}. For any v ∈
Span{v1, . . . , vn}, ∃α ∈ Rn such that v =

∑n
i=1 αivi.

4. The basis of a vector space V is a set of linearly independent vectors v1, . . . , vk with Span{v1, . . . , vk} = V .

5. The column rank of a matrix A ∈ Rm×n is the dimension of the span of its columns a:1, . . . , a:n. We call this span the column
space of A. The row rank and row space are analogous. We’ll see below that for square matrices, row rank = column rank,
and thus in that setting we refer to both of these as just the rank.

6. The null space or kernel of a matrix A ∈ Rm×n, written Null(A), is the set of vectors that A maps to 0: Null(A) := {v ∈ Rn :
Av = 0}. Null(A) is a linear subspace of Rn.

Example 1.1

Let A =

(
1 2
2 1

)
.

1. We claim rank(A) = 2. We have α

(
1
2

)
+ β

(
2
1

)
= 0 iff α + 2β = 0 and 2α + β = 0. Solving the first equation gives

α = −2β and plugging that into the second gives β = 0 so that α = 0.

2. Null(A) = {0} because if there were any nonzero
(
α
β

)
∈ Null(A), then we’d have a linear combination of the columns

that is equal to zero. We just showed above this is not the case (see also the rank-nullity theorem below).

Lemma 1.2
For square matrices, row rank = column rank.
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Proof. Let A be an n×m matrix with column rank r. Let c:1, . . . , c:r be a basis for the column space of A. Each column a:j of A
is a linear combination

∑r
k=1 c:kbkj of the basis vectors. Let C be the matrix with columns c:1, . . . , c:r and B be the matrix with

columns b:1, . . . , b:m. In terms of these matrices, we have A = CB.

Now consider AT = BTCT . Each column of AT is a linear combination of columns of BT , so each row of A is a linear combination
of rows of B. Since B has r rows, the row rank of A is at most r.

Suppose the row rank of A were s < r. Then the column rank of AT is s. Applying the same argument as above in reverse shows
that the column rank of A is at most s. Then, we have r ≤ s < r, a contradiction. Thus, we must have the row rank of A is r. ■

Theorem 1.3 (rank-nullity theorem)
If A ∈ Rm×n, then dim(Null(A)) + rank(A) = n where rank(A) denotes the column rank.

Proof. Suppose dim(Null(A)) = k and that Null(A) has basis {u1, . . . , uk}. Then, we can extend this basis to a basis of Rn:
{u1, . . . , uk, v1, . . . , vn−k}. We claim {Av1, . . . , Avn−k} is a basis for the column space of A (which would complete the proof since
then rank(A) = n − k). First, we show {Av1, . . . , Avn−k} span the column space of A. We have if w ∈ Rn is an arbitrary vector,
then there exist a1, . . . , ak, b1, . . . , bn−k ∈ R such that

w = a1u1 + · · ·+ akuk + b1v1 + · · ·+ bn−kvn−k

Aw = a1Au1 + · · ·+ akAuk + b1Av1 + · · ·+ bn−kAvn−k

= b1Av1 + · · ·+ bn−k

Next, we show {Av1, . . . , Avn−k} are linearly independent. If c1Av1 + · · ·+ cn−kAvn−k = 0, then, A(c1v1 + · · ·+ cn−kvn−k) = 0 =⇒
c1v1 + · · ·+ cn−kvn−k ∈ Null(A). Thus, there exists d1, . . . , dk ∈ R such that

c1v1 + · · ·+ cn−kvn−k = d1u1 + · · ·+ dkuk

=⇒ c1v1 + · · ·+ cn−kvn−k − d1u1 − · · · − dkuk = 0

=⇒ c1 = · · · = cn−k = d1 = · · · = dk = 0.

Thus, {Av1, . . . , Avn−k} is a basis for the column space of A meaning rank(A) = n− k. ■

2 Invertibility

A matrix A is called right-invertible if there exists a matrix B such that AB = Id and left-invertible if there exists C such that
CA = Id. We call B a right inverse and C a left inverse. We say A is invertible if it is both right and left invertible – in that case,
B = C:

B = (CA)B = C(AB) = C.

Theorem 2.1
A square matrix A ∈ Rn×n is invertible iff it is left or right invertible.

Proof. Using what we’ve learned so far, it suffices to show that A has a left inverse iff it has linearly independent columns (then,
the same statement can be derived for right-inverses and linearly independent rows). If A has a left inverse, CA = Id, then for
any vector α ̸= 0, CAα = α so that Aα ̸= 0. Thus, A has linearly independent columns.

Next, we show that if A has linearly independent columns, then it has a left inverse. Let a:1, . . . , a:n be the columns of A. Then,
by virtue of Span{a:1, . . . , a:n} = Rn, there is some linear combination of the columns of A that make each basis vector or for
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each k ∈ {1, . . . , n}, there is a vector αk ∈ Rn such that Aαk = ek, the k-th basis vector. Then, the matrix with k-th row αk is a
left-inverse to A: α1

...
αn

(a:1 · · · a:n
)
=

aT1 α1 · · · aTnα1

... . . . ...
aT1 αn · · · aTnαn

 =

Aα1

...
Aαn

 = Idn .

Thus, since a square matrix has linearly independent rows iff it has linearly independent columns, then it is right invertible iff it
is left invertible. ■

Theorem 2.1 (multiplying by an invertible matrix doesn’t change rank)
If A is m× n and B is an n× n invertible matrix, then rank(AB) = rank(A).

Proof. A and AB are both m × n so by rank-nullity it suffices to show dim(Null(A)) = dim(Null(AB)). But, v ∈ Null(A) iff
B−1v ∈ Null(AB). So, the dimensions of these null spaces are equal. ■

Remark 2.2. A ∈ Rn×n is invertible if and only if Null(A) = {000n}. More generally, see here for a list of ways to check if a matrix is
invertible.

3 Orthogonality and orthogonalization

Recall an inner product space (V, ⟨·, ·⟩) is a vector space V equipped with an inner product ⟨·, ·⟩ : V ×V → R. The standard example
here for V = Rn is the Euclidean inner product ⟨v, w⟩ = vTw. The norm of a vector is then defined as ∥v∥ =

√
⟨v, v⟩ =

√
vT v which

is here the usual 2-norm. Let’s run with this standard example for the rest of this section.

One tool that can be very useful when thinking about linear independence is orthogonalization. The Gram-Schmidt process takes
a sequence of vectors v1, . . . , vk ∈ Rn and gives you an orthogonal basis u1, . . . , uℓ for Span{v1, . . . , vk}. The idea is to let ui be vi
minus its projection onto u1, . . . , ui−1 so that vi ∈ Span{u1, . . . , ui} and ui is orthogonal to u1, . . . , ui−1. Here is the construction
in a little more detail.

Let proju(v) = uT v
∥u∥2 · u. Then, proju(v) is the projection of v onto u: i.e., it has the same direction as u and has the same inner

product with u that v does. We can check this easily: uT proju(v) =
uT v
∥u∥2u

Tu = uT v. Now let’s construct our sequence u1, . . . , uℓ.
For ease of bookkeeping we’ll construct a sequence ũ1, . . . , ũk where some of the ũi are zero, then discard all the zero vectors.

Let ũ1 = v1 and ũi = vi−
∑i−1

k=1 projũj
(vi). We’ll show that ũ1, . . . , ũn are pairwise orthogonal and have the same span as v1, . . . , vn

using induction. The base case is obvious. For the inductive step, assume that ũ1, . . . , ũi−1 have the same span as v1, . . . , vi−1.

• Orthogonality: We’ll show that for j < i, ũj is orthogonal to ũi. Combining this with our inductive hypothesis gives
pairwise orthogonality of ũ1, . . . , ũi. We have

ũT
j ũi = ũT

j vi −
i−1∑
k=1

ũT
j projũj

(vi) = ũT
i vi − ũT

j projũj
(vi) = 0.

The second equality holds since ũj is orthogonal to ũk for k ̸= j < i by our inductive hypothesis. The last equality holds
because uT proju(v) = uT v for any u, v.

• Span: We’ll show that we can express each of v1, . . . , vi as linear combinations of the other ũ1, . . . , ũi. By our inductive
hypothesis, it suffices to show that we can express vi as a linear combination of ũ1, . . . , ũi and ũi as a linear combination of
ũ1, . . . , ũi−1, vi. The definition vi = ũi +

∑i−1
k=1 α̃ikuk where α̃ik = vTi uk gives us both.

Some of the ũi we computed may have been zero, so we can discard them to compute a new sequence u1, . . . , uℓ = ũk1 , . . . , ũkℓ

where k1, . . . , kℓ are the indices of the nonzero ũ.
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This algorithm gives us more than an orthogonal basis for Span{v1, . . . , vn}. It gives us a matrix decomposition A := (v1, . . . , vn) =
QR where the columns of Q are orthonormal and R is upper triangular (also called the QR decomposition of A). Let αi1, . . . , αiℓ =
α̃ik1 , . . . , α̃ikℓ

to match u.

(
v1 · · · vk

)
=
(
ũ1 · · · ũk

)

1 α̃12 α̃13 · · · α̃1k

0 1 α̃23 · · · α̃2k

...
...

... . . . ...
0 0 0 · · · 1



=
(
u1 · · · uℓ

)

1 α12 α13 · · · α1k

0 1 α23 · · · α2k

...
...

... . . . ...
0 0 0 · · · 1



=
(

u1

∥u1∥ · · · uℓ

∥uℓ∥

)
︸ ︷︷ ︸

Q1


∥u1∥ ∥u1∥α12 ∥u1∥α13 · · · ∥u1∥α1k

0 ∥u2∥ ∥u2∥α23 · · · ∥u2∥α2k

...
...

... . . . ...
0 0 0 · · · ∥uℓ∥


︸ ︷︷ ︸

R1

If k = n and v1, . . . , vn span Rn, then Q is an n× n matrix with orthonormal columns and R1 is an n× n upper triangular matrix
with positive entries on the diagonal. If v1, . . . , vk don’t span Rn, we can get a similar decomposition. Let Q⊥

1 be an orthogonal
basis for the r-dimensional subspace W orthogonal to Span{v1, . . . , vk} (recall this means w ∈W iff ⟨w, vi⟩ = 0 for all i). Then,

(v1, . . . , vk) =
(
Q1 Q⊥

1

)︸ ︷︷ ︸
Q

(
R1

0r×k

)
︸ ︷︷ ︸

R

.

We call this the QR decomposition of the matrix A = (v1, . . . , vk). Q is an n× n matrix with orthonormal columns and R is an
n× k upper triangular matrix. Notice that for full-rank square A, Q = Q1 and R = R1.

So far I’ve been using the phrase ‘an n×n matrix with orthonormal columns’ whereas it is conventional to use the term ‘orthogo-
nal matrix’. The conventional definition of an orthogonal matrix is a matrix Q such that QTQ = QQT = Id. It’s straightforward to
show that these definitions are equivalent. We have (QTQ)ij = qT:i q:j so that QTQ = Id iff Q has orthonormal columns. Because
QT is a left inverse of Q, it is also a right inverse QQT = Id. To get another equivalence, observe that QQT = Id iff the columns
of QT , which are the rows of Q, are orthonormal.

One common application of the QR decomposition is to solve linear systems and least square problems. For a brief summary of
how that works, let’s consider the system Ax = b where A = QR. Geometrically, we’re asking whether b is in the span of the
columns of A. Because Q is invertible with inverse QT , Ax = b iff Rx = QT b. If A is not full rank, R will have some zero rows, and
if QT b is nonzero in those rows, then the equation has no solution. If QT b is zero in all rows where R is, then we can compute
solution easily through back substitution.

4 Determinants

Recall the determinant of a set of vectors v1, . . . , vn ∈ Rn, written det(v1, . . . , vn), is the signed volume of the parallelotope with
sides v1, . . . , vn (this is a mathematical generalization of the notion of volume of a parallelepiped for n = 3). It’s common to talk
about the determinant det(A) of an n× n matrix. This means the determinant det(a:1, . . . , a:n) of the columns of A.

The determinant tends to come up in two roles:

1. When we reparametrize, or do a change of variables, in an integral by letting x = ϕ(u), we need to know the volume of
ϕ(U) where U is an infinitesimal cube. Linearly approximating ϕ, this amounts to finding the volume of a parellelepiped
which means the determinant should come into play. For the core competency exam, two common situations where you
need to do this are (i) when computing the pdf of a transformation of a random vector and (ii) when computing the Fisher
information of a transformation of a parameter.
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2. When we want to know whether a set of vectors v1, . . . , vn is linearly independent. The volume of the parallelotope with
columns v1, . . . , vn is zero iff it is flat in some direction. The direction of flatness is a projection of the columns that is
equal to zero – it indicates linear dependence. In fact, det(v1, . . . , vn) = 0 iff v1, . . . , vn are linearly dependent, so we’re often
interested only in whether det is zero or nonzero. We’ll prove this property when we have a definition of det.

4.1 Determinants in R2

Let’s start by defining it in R2 because the notation is easier. The determinant must satisfy three properties:

1. det is multilinear: det(u, v + αw) = det(u, v) + α det(u,w).

2. det is alternating: det(u, v) = − det(v, u).

3. det(Id) = 1.

In fact, these properties uniquely define the determinant. We’ll use them to derive a formula for the determinant, but first we’ll
need to prove one property.

Lemma 4.1
det(v, v) = 0.

Proof. This follows from the alternating property. det(v, v) = −det(v, v). ■

Now, we’ll derive a formula for the determinant of a matrix A ∈ R2×2. Let e1, e2 be the columns of the identity. and let
a:1 = a11e1 + a21e2 and a:2 = a12e1 + a22e2. Then, we have

det(a:1, a:2) = det(a11e1 + a21e2, a12e1 + a22e2)

= a11 det(e1, a12e1 + a22e2) + a21 det(e2, a12e1 + a22e2)

= a11a12 det(e1, e1) + a12a22(e1, e2) + a12a12 det(e2, e1) + a21a22 det(e2, e2)

= a11a22 − a21a12,

where we use the third and second properties of the determinant to plug in det(e1, e2) = 1 = −det(e2, e1) and our lemma to plug
in det(e1, e1) = det(e2, e2) = 0.

Now, let’s generalize this to Rn.

4.2 Determinants in Rn

The properties of our determinant generalize to:

1. det is multilinear: det(u1, . . . , ui + αvi, . . . , un) = det(u1, . . . , ui, . . . , un) + α det(v1, . . . , vi, . . . , un).

2. det is alternating: det(u1, . . . , ui−1, uj , ui+1, . . . , uj−1, ui, uj+1, . . . , un) = −det(u1, . . . , un) (in other words, if we swap vectors
ui and uj , we flip the sign of the determinant).

3. det(Id) = 1.

Lemma 4.2
ui = uj =⇒ det(u1, . . . , un) = 0.

Proof. We can imagine swapping the i-th and j-th columnn which does not change the value of the determinant, but at the
same time by the alternating property, flips its sign. Thus, we must have det(u1, . . . , un) = −det(u1, . . . , un) = 0. ■
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Lemma 4.3
For i ̸= j, det(u1, . . . , ui−1, ui + αuj , ui+1, . . . , un) = det(u1, . . . , un).

Proof.

det(u1, . . . , ui−1, ui + αuj , ui+1, . . . , un) = det(u1, . . . , un) + α det(u1, . . . , ui−1, uj , ui+1, . . . , uj−1, uj , uj+1, . . . , un)

= det(u1, . . . , un) + 0 (by the previous lemma)

■

Proposition 4.4
If u1, . . . , un are linearly dependent, then det(u1, . . . , un) = 0.

Proof. If u1, . . . , un are linearly dependent, then ∃j such that uj =
∑

i ̸=j αiui. WLOG, let j = 1. Then, det(u1, . . . , un) =∑n
i=2 αi det(ui, u2, . . . , ui, . . . , un) =

∑n
i=2 αi · 0 = 0, where we use the previous two lemmas. ■

Now, we’re ready to work out a formula for the determinant of an n×n matrix. Let e1, . . . , en be the columns of the n×n identity
matrix. Then, expanding each a:i into a linear combination of basis vectors, we have:

det(A) = det(a:1, . . . , a:n)

= det

(
n∑

i1=1

ai1,1ei1 , a:2, . . . , a:n

)

=

n∑
i1=1

ai1,1 det(ei1 , a:2, . . . , a:n)

=

n∑
i1=1

· · ·
n∑

in=1

ai1,1 · · · ain,n det(ei1 , . . . , ein).

We have that det(ei1 , . . . , ein) = 0 if ij = ik for some j ̸= k – in other words, unless i1, . . . , in is a permutation of the numbers
1, . . . , n. So, we just need to sum the above summand over the set Sn of permutations of the n numbers {1, . . . , n}. Let σ ∈ Sn

be a permutation. The sign of the permutation, sgn(σ), is 1 if the number of interchanges taking σ to {1, . . . , n} is even and −1
if it is odd. Recall here a basic fact of combinatorics that every permutation of n objects can be written as the composition
of interchanges (i.e., swapping consecutive objects one at a time) and that any such composition is always even or odd in
length depending on the permutation. But, this is the same rule we use when interchanging columns in the determinant:
sgn(σ) = det(eσ1 , . . . , eσn). Thus, our determinant formula is:

det(A) =
∑
σ∈Sn

sgn(σ) · aσ1,1 · · · aσn,n.

Let’s think about why we might expect this formula. First, multilinear functions are products, so we’d expect to have a product of
entires of ai:. Second, we often sum a function over all permutations of its arguments to get a permutation invariant version of
the function. Summing a function times an alternating function of the permutation over all permutations seems like an obvious
way to get an alternating function.

Now, let’s work out a few more properties of the determinant:

Proposition 4.5
det(AB) = det(A) det(B).
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Proof. When we derived the formula for det(A) above, we wrote each column of A as a sum of the columns of Id. We then used
multilinearity and the alternating property to transform this into a sum

∑
σ∈Sn

sgn(σ)aσ1,1 · · · aσn,n. Here, in a similar manner,
we’re going to write each column of AB as a sum of columns of A and use a similar process.

AB =
[∑n

i1=1 a:1bi1,1 . . .
∑n

in=1 a:,inbin,n
]

det(AB) = det

(
n∑

i1=1

a:1bi1,1, . . . ,

n∑
in=1

a:,inbin,n

)

=

n∑
i1=1

· · ·
n∑

i1=1

bi1,1 · · · bin,n det(a:,i1 , . . . , a:,in)

=
∑
σ∈Sn

sgn(σ) det(A)

n∏
i=1

bσi,i

= det(A) det(B)

■

Proposition 4.6
det(AT ) = det(A).

Proof. This one relies on the property that the set Sn of permutations on n indices is a group under composition. Each element
σ ∈ Sn has a unique inverse σ−1 ∈ Sn such that σ(σ−1

i ) = σ−1(σi) = i. We’ll also need the property that sgn(σ) = sgn(σ−1) (which
is clear from writing σ as a composition of interchanges and then realizing σ−1 is the same composition in reverse). So, we have

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

aσi,i

=
∑
σ∈Sn

sgn(σ)

n∏
i=1

aσ(σ−1(i)).σ−1(i) (reordering the product)

=
∑
σ∈Sn

sgn(σ)

n∏
i=1

ai,σ−1(i)

=
∑
σ∈Sn

sgn(σ−1)

n∏
i=1

ai,σ−1(i)

=
∑

σ′∈Sn

sgn(σ′)

n∏
i=1

ai,σ′
i

(writing σ′ for σ−1 and reordering the sum)

■

One consequence of the above proposition is that because the determinant is invariant under the column operation a:i ←
a:i + αa:j , the determinant must also be invariant under the row operation ai: ← ai: + αaj:.

Proposition 4.7
det(A) = 0 iff a:1, . . . , a:n are linearly dependent.

Proof. We already showed the ‘if’ direction earlier, so we just need to show the ‘only if’ part. If A has linearly independent
columns, then these columns span Rn so that A has a QR decomposition A = QR where Q is a matrix with orthonormal columns
and R is upper triangular with positive entries on the diagonal. Then, det(A) = det(Q) det(R).

We first compute det(Q). Since QTQ = Id, we must have det(QT ) det(Q) = det(Id) = 1. But, we also have det(QT ) = det(Q) so
that det(Q)2 = 1 and thus det(Q) = ±1.
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Next, we compute det(R). Consider the formula det(R) =
∑

σ∈Sn
sgn(σ)rσ1,1 · · · rσn,n. Because rij = 0 for i < j,. the term

associated with a permutation σ is nonzero only if σi ≥ i for all i ∈ 1, . . . , n. Only the identity permutation σ : σi = i satisfies this
constraint. Can you see why? Thus, det(R) = r11 · · · rnn, the product of the diagonal elements. Because these are all positive,
det(R) > 0.

Using these properties, we have det(A) = ± det(R) ̸= 0. Thus, we have shown the contrapositive of det(A) = 0 if a:1, . . . , a:n are
linearly dependent. ■

Computationally, it’s often more efficient to use other methods like QR decomposition to determine whether a set of vectors is
linearly dependent, but the determinant will be a powerful theoretical tool. We’ll see it applied to the question of existence of
eigenvalues and eigenvectors in the next section.

5 Eigenvalues and eigenvectors

5.1 Existence of eigenvalues and eigenvectors

Let A ∈ Rn×n be a square matrix. Suppose there exists a vector v ∈ Rn and λ ∈ R such that

Av = λv.

Then, v is called an eigenvector of A corresponding to eigenvalue λ. Typically, we assume the eigenvector v is nonzero.

If λ and v are corresponding eigenvalue and eigenvector, then (A− λ Id)v = 0. From the previous section, we know there exists
v such that (A− λ Id)v = 0 iff det(A− λ Id) = 0. Applying the formula for the determinant, we see that det(A− λ Id) is an n-th
degree polynomial in λ and therefore has between 1 and n distinct roots λi by the fundamental theorem of algebra. These are
the eigenvalues of A. Note that they may be complex in general.

It’s tempting to ask whether A having exactly k distinct eigenvalues implies it has exactly k distinct eigenvectors. That isn’t
quite the right question. If vi is an eigenvector associated with an eigenvalue λi, then so is αvi for any scalar α, so there is an
infinite scale-family of eigenvectors associated with every eigenvalue. Even if we constrain all eigenvalues to have unit length,
we still get infinite families in some cases. Consider the identity matrix Id. Id v = 1 · v for all vectors v so every vector in Rn is an
eigenvector of Id associated with the eigenvalue 1. Instead, we can say the following.

Theorem 5.1
If v1, . . . , vk are eigenvectors associated with distinct eigenvalues λ1, . . . , λk, then v1, . . . , vk are linearly independent.

Proof. Let j be the maximal j such that v1, . . . , vj are linearly independent. If j < k, then there exists α such that vj+1 =
∑j

i=1 αivi.
Multiplying both sides by A, we get λj+1vj+1 =

∑j
i=1 λiαivi. Expanding vj+1, we get λj+1

∑j
i=1 αivi =

∑j
i=1 λiαivi and therefore∑j

i=1(λj+1−λj)αivi = 0, which implies that v1, . . . , vj are not linearly independent either, contradicting our assumption. Therefore,
we must have j = k. ■

This guarantees us a basis of eigenvectors if A ∈ Rn×n has n distinct eigenvalues. Behavior is more complex when it has k < n.
As we saw with the example of the identity matrix, sometimes a matrix with a repeated eigenvalue has a basis of eigenvectors.
Let’s look at one that doesn’t.
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Example 5.2

A =

(
1 1
0 1

)
.

We have det(A− λ Id) = (1− λ)2 so A has only one eigenvalue 1. Its eigenvectors satisfy (A− 1 · Id)v = 0 or(
0 1
0 0

)(
x
y

)
= 0.

Then, y must be zero, so the subspace of eigenvectors is spanned by
(
1
0

)
.

We call the order of the root λ in the polynomial det(A − λ Id) the algebraic multiplicity of λ. We call the number of linearly
independent eigenvectors with eigenvalue λ the geometric multiplicity of λ.

When considering complex matrices A ∈ Cn×n and complex eigenvectors v ∈ Cn and eigenvalues λ ∈ C, by the fundamental
theorem of algebra, det(A− λ Id) has n roots in λ meaning the sum of algebraic multiplicites

∑k
i=1 ai = n. If g1, . . . , gk are the

geometric multiplicities of the k distinct eigenvalues of A, then k ≤
∑k

i=1 gi ≤ n =
∑k

i=1 ai. A stronger relationship 1 ≤ gi ≤ ai
can be proven using an argument like the one in next section’s proof of the spectral theorem for symmetric matrices.

Theorem 5.3
If v1, . . . , vk are the eigenvectors of the same eigenvalue λ, then any vector in Span{v1, . . . , vk} is also an eigenvector.

Proof. Let w =
∑

i αivi. Then, Aw =
∑

i αiAvi =
∑

i αiλvi = λw. ■

For this reason we sometimes refer to the eigenspace or subspace (of eigenvectors) associated with an eigenvalue. In the
next section, we’ll look at symmetric matrices, for which it is possible to prove existence of a basis of eigenvectors even when
eigenvalues are repeated. In the remainder of this one, we’ll discuss a decomposition that exists for matrices which have a basis
of eigenvectors.

5.2 Diagonalization

Theorem 5.4
Suppose that A ∈ Cn×n has a basis of eigenvectors. Then A = V λV −1 where Λ is a diagonal matrix. We call this a
diagonalization or eigenvalue decomposition of A.

Proof. Let V = (v:1, . . . , v:n) where v:1, . . . , v:n are eigenvectors of A with corresponding eigenvalues λ1, . . . , λn. Let Λ be a
diagonal matrix whose diagonal elements are the eigenvalues λ1, . . . , λn. Then,

AV = (Av:1, . . . , Av:n) = (λ1v:1, . . . , λnv:n) = V Λ.

Next, since the eigenvectors are linearly independent, V is invertible, so A = V ΛV −1. ■

This result and its implication for symmetric matrices is one of the most important results you will use in statistics. This theorem
is at the heart of many different statistical scenarios such as principal component analysis, the analysis of ridge regression,
spectral methods for graph data, etc.. We’ll use this decomposition to prove a few results.

Corollary 5.5
Suppose A has a basis of eigenvectors. Then, det(A) =

∏n
i=1 λi.

Page 9
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Proof. A has diagonalization V ΛV −1. Then,

det(A) = det(V ) det(Λ) det(V −1) = det(V V −1) det(Λ) = 1 ·
∏
i

λi,

where we use the product rule for determinants and the simplified formula for the determinant of a diagonal matrix. ■

This result is actually true even if A doesn’t have a basis of eigenvectors. There are proofs very similar to the one above using
matrix decompsitions that exist for all A ∈ Cn×n. Two options are the Jordan normal form and the Schur decomposition. The
second will be discussed briefly in the following section.

Corollary 5.6
Suppose A has a basis of eigenvectors. Then, Tr(A) =

∑n
i=1 λi.

Proof. First, we’ll show that Tr(AB) = Tr(BA):

Tr(AB) =

n∑
i=1

(AB)ii =
∑
i

∑
k

aikbki =
∑
k

∑
i

bkiaik = Tr(BA).

Now, we use the diagonalization:

Tr(A) = Tr((V Λ)V −1) = Tr(V −1V Λ) = Tr(Λ) =
∑
i

λi.

■

Like the previous result, the above corollary is true even if A doesn’t have a basis of eigenvectors, and the proof in that event is
similar to the one above.

Corollary 5.7
Suppose A has a basis of eigenvectors. Then, rank(A) is the number of nonzero eigenvalues λi of A.

Proof. rank(A) = rank(Λ) because multiplying by an invertible matrix doesn’t change rank. The nonzero columns of Λ are linearly
independent, so rank(A) is the number of columns containing a nonzero eigenvalue. This is the number of nonzero eigenvalues
counted with multiplicity. ■

6 Eigenvalues and eigenvectors of symmetric matrices

A symmetric matrix is a matrix A ∈ Rn×n such that AT = A. A standard example in statistics is a covariance matrix. Symmetric
matrices are nice to work with because they are always diagonalizable with real eigenvalues. We’ll prove those properties now.

Theorem 6.1
Symmetric matrices have real eigenvalues.

Proof. Let λ and v be a (complex) eigenvalue and eigenvector pair of a symmetric matrix A. Then taking complex conjugates,
λv = λv = Av = Av because A is real. Thus,

λ∥v∥2 = vTλv = vTAv = (AT v)T v = (Av)T v = λvT v = λ∥v∥2.

Thus, λ = λ meaning λ is real. ■
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In fact, we will deduce from the next theorem that the eigenvectors can be taken to be real in the sense that there is an
orthogonal basis of real eigenvectors for Rn. One slight subtlety here is that a real symmetric matrix could still have complex
eigenvectors when treated as a complex matrix (e.g., any complex vector is an eigenvector of the identity matrix for eigenvalue 1).
It turns out that this difference is essentially ignorable for real symmetric matrices: regardless of whether you work over R or C,
the eigendimensions of real eigenvectors coincide and there is a basis of real eigenvectors of A for Cn.

Theorem 6.2 (spectral theorem for symmetric matrices)
If A ∈ Rn×n is symmetric, then A has an orthogonal basis of eigenvectors.

Proof. First, recall from the last section that A has an orthogonal basis of eigenvectors iff there exists orthogonal Q and diagonal
Λ such that A = QTΛQ. We’ll be using this characterization in the proof. We’ll prove this result by induction on the dimension n.
The base case n = 1 is trivial.

Assume the result is true for dimension n − 1. Let A ∈ Rn×n and let λ, u be an eigenvalue and corresponding (normalized)
eigenvector of A. Let V ∈ Rn×(n−1) have columns that form an orthogonal basis for the space orthogonal to u. We can compute
the columns v:1, . . . , v:,n−1 by applying Gram-Schmidt to the sequence of vectors u, e1, . . . , en. V TAV is then a symmetric
(n− 1)× (n− 1) matrix and thus has a decomposition QΛQT by the induction hypothesis. Then, QTV TAV Q = Λ1, the diagonal
matrix of the first n− 1 eigenvalues. Thus,

(
u V Q

)T
A
(
u V Q

)
=

(
uTAu uTAV Q

QTV TAu QTV TAV Q

)
=

(
λ 0
0 Λ1

)
,

where we use the facts that (1) the column space of V and u are orthogonal and (2) V is orthogonal to establish uTAV =
(ATu)TV = (Au)TV = λuTV = λ · 0 = 0 and V TAu = V Tλu = 0. Therefore,

(
u V Q

)
is a basis of eigenvectors for A. All that

remains to check is that it’s orthogonal:

(
u V Q

)T (
u V Q

)
=

(
uTu uTV Q

QTV Tu QTV TV Q

)
=

(
1 0
0 Idn−1

)
.

■

You may have noticed that the only place the above proof uses symmetry is to show that the top-right block of(
uTAu uTAV Q

QTV TAu QTV TAV Q

)
is zero. If A is not symmetric, you can use the same construction and proof to show that any matrix A ∈ Rn×n has a decomposition
QLQT where Q is orthogonal and L is lower triangular. This is known as a Schur decomposition.

There is another way of writing this decomposition that can be useful.

Corollary 6.3
If A ∈ Rn×n is symmetric, A =

∑n
i=1 λiq:,iq

T
:,i where q:,i are orthogonal eigenvectors of A with corresponding eigenvalue λi.

Proof.
Aij = ((QΛ)QT )ij =

∑
k

(QΛ)ikQ
T
kj =

∑
k

λkqik(Q
T )kj =

∑
k

λkqikqjk =
∑
k

λk(q:kq
T
:k)ij

■

7 Eigenvalues and optimization

Many optimization problems have eigenvalues as optima and eigenvectors as solutions. Here is a simple one.
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Theorem 7.1
Let A be a real symmetric n× n matrix. sup

b∈Rn:bT b ̸=0

bTAb
bT b

= λmax(A).

Proof.
bTAb

bT b
=

bTQTΛQb

bT b
=

bTQTΛQb

bTQTQb
=

aTΛa

aTa
,

where a := Qb. Thus, if we define v := a√
aT a

, we obtain

bTAb

bT b
=

aT√
aTa

Λ
a√
aTa

= vTΛv,

with vT v = 1. Hence,
sup

b:bT b ̸=0

bTAb

bT b
= sup

v:vT v=1

vTΛv.

Now, sup
v:vT v=1

vTΛv = sup
v:vT v=1

∑n
i=1 λiv

2
i = λmax(A).

In fact, we claim the sup is attained iff v is in the eigenspace of λmax(A). This is true since v ∝ Qb is a weighting of eigenvectors
and the sup is attained iff all the weights are placed on the eigenvectors corresponding to the top eigenvalue(s). Thus, v is in the
eigenspace of λmax(A). Now let’s figure out what that makes b.

v =
Qb√

(Qb)T (Qb)
=

Qb

∥b∥
=⇒ b

∥b∥
= QT v.

Thus, the optimum is attained iff b is in the column span of QTV where V is a basis for the eigenspace of λmax. ■

Corollary 7.2

inf
b ̸=0

bTAb
bT b

= λmin(A).

Corollary 7.3
A matrix A ∈ Rn×n is called nonnegative definite or positive semidefinite if vTAv ≥ 0 for all v ∈ Rn. It is called positive definite if
the inequality is strict for all v ∈ Rn\{0}. The previous result implies the following.

1. If a symmetric matrix A is nonnegative definite, then all the eigenvalues of A are nonnegative.

2. If a symmetric matrix A is positive definite, then all the eigenvalues of A are positive.

8 Functions of symmetric matrices

The A = QΛQT representation enables us to define and calculate different functions of the matrix A in a natural way. Here are a
few useful examples:

1. Square-root of a nonnegative definite matrix: Let A be a nonnegative definite matrix. We can define and calculate

A1/2 := Q · diag(
√

λ1,
√
λ2, . . . ,

√
λn) ·QT .

This matrix has the properties that A1/2 is symmetric and nonnegative definite, and that A1/2A1/2 = A.
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2. Polynomials of symmetric matrices: applying a polynomial function to a symmetric matrix is equivalent to applying the
polynomial to only the eigenvalues of the matrix, i.e. if p(x) is a polynomial in x, we have

p(A) = Q · diag(p(λ1), . . . , p(λn)) ·QT .

3. Exponential of a symmetric matrix: we can also define

eA := Q · diag(eλ1 , . . . , eλn) ·QT .

Again, this definition of the exponential has many nice properties such as the Taylor expansion:

eA = Id+A+
A2

2!
+ · · · .

9 Singular value decomposition

There is a more generalized decomposition for non-symmetric matrices called the singular value decomposition (SVD). The
eigendecomposition is a special case of the SVD. This decomposition also appears in many statistical problems, such as principal
component analysis or clustering.

To start, we can recognize a general matrix A ∈ Rm×n as a linear transformation of a vector v in its row space to a vector u in
its column space: Av = u. The SVD arises from finding an orthogonal basis for the row space that gets transformed into an
orthogonal basis for the column space: Av = σu. It’s not hard to find an orthogonal basis for the row space – the Gram-Schmidt
procedure gives us one right away. But in general, there’s no reason to expect A to transform that basis to another orthogonal
basis. Intuitively, however, the geometric fact that a unit sphere is taken to a hyperellipse by any linear transformation should
guide us.

Theorem 9.1 (SVD)
Let A ∈ Rm×n be an m × n matrix. Then, it can be decomposed as A = UΣV T where U ∈ Rm×m and V ∈ Rn×n are both
orthogonal, and Σ ∈ Rm×n is diagonal (i.e., has non-zero entries only on the diagonal).

The singular values are the diagonal entries of Σ with entries σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. The left singular vectors of A are the
column vectors of U , while the right singular vectors of A are the column vectors of V .

We will not prove this existence theorem, although it is similar to our proof of the spectral theorem for symmetric matrices
and relies on an induction on the size of A and Gram-Schmidt. The proof may be found in various places, e.g. Lecture 4 of the
textbook “Numerical Linear Algebra” by Trefethen and Bau.

Here are some of the relevant facts about SVD. Note there is a striking similarity with many of the properties we derived for
eigenvalues and the eigendecomposition.

1. Every matrix A ∈ Rm×n has an SVD. Furthermore, the singular values {σj} are uniquely determined and, if A is square,
they are all distinct. The left and right singular vectors {uj} and {vj} are uniquely determined up to signs.

2. The eigenvalues are not always real, but the singular values are always nonnegative reals.

3. The SVD is often more conveniently written as AV = UΣ or as Avi = uiσi for singular value/vectors σi, vi, ui.

4. The largest singular value σ1(A) satisfies σ1(A) = sup
v:∥v∥2=1

∥Av∥2.

5. The nonzero singular values of A are the square roots of the nonzero eigenvalues of ATA (or AAT ). If A = AT is symmetric,
then the singular values of A are the absolute values of the eigenvalues of A. Furthermore, the eigenvectors of AAT are
the left singular vectors and the eignvectors of ATA are the right singular vectors.

6. If A ∈ Rn×n is a square matrix, then |det(A)| =
∏n

i=1 σi.

7. A =
∑min(m,n)

i=1 σiuiv
T
i .
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10 Problems

10.1 Previous Core Competency Problems

Problem 1 (2018 Summer Practice Problems, # 18). Suppose Σ is a nonnegative definite matrix of n× n with real entries and
real eigenvalues. Show that Tr(Σ2) ≥ n · det(Σ)2/n.

Problem 2 (2020 September Exam, # 8). For every n ≥ 1, let An be an n× n symmetric matrix with non negative entries. Let
Rn(i) :=

∑n
j=1 An(i, j) denote the ith row/column sum of An. Assume that

lim
n→∞

max
1≤i≤n

|Rn(i)− 1| = 0.

Let λn ≥ 0 denote an eigenvalue with the largest absolute value, and let x := (x1, . . . , xn) denote its corresponding eigenvector.

(a) Show that 1
n

∑n
i,j=1 An(i, j)→ 1.

(b) Show that λn|xi| ≤ max1≤j≤n |xj |Rn(i).

(c) Using parts (a) and (b), show that λn → 1.

Problem 3 (2021 May Exam, # 7). Suppose that A = (aij)1≤i,j≤2 is a 2× 2 symmetric matrix, with a11 = a22 = 3
4 and a12 = a21 = 1

4 .

1. Find the eigenvalues and eigenvectors of the matrix A.

2. Compute limn→+∞ a
(n)
12 , where a

(n)
ij denotes the (i, j)’s entry of matrix An.

Problem 4 (2021 Sept Exam, # 6). Let A ∈ Rm×n denote an m× n matrix with n < m. Suppose that λ1, λ2, . . . , λn and v1, . . . ,vn

denote, respectively, the eigenvalues and eigenvectors of ATA. What can we say about ALL the eigenvalues and eigenvectors of
AAT ? Justify your answer.

10.2 Additional Practice

Problem 5. Let A be a 3× 3 real-valued matrix such that ATA = AAT = Id3 and det(A) = 1. Prove that 1 is an eigenvalue of A.

Problem 6. Let A ∈ Rn×n be a symmetric n × n matrix such that Tr(A2) = 0. Show that T = 000n×n. Hint: use the fact that
Tr(ABC) = Tr(CAB) for matrices A,B,C.

Problem 7. Let matrices A,B ∈ Rn×n have respective eigendecompositions Q1D1Q
T
1 and Q2D2Q

T
2 (recall this means each Di is

a diagonal matrix of eigenvalues and each Qi is an orthogonal matrix). Prove that Q1 = Q2 if and only if AB = BA. You may
assume that A,B do not have any repeated eigenvalues.

Problem 8. Let A = uvT ∈ Rn×n be a rank-one matrix, i.e. u, v ∈ Rn. Suppose u, v ̸= 000n. Find, with proof, all the eigenvalues of A.

Problem 9 (Heisenberg uncertainty principle). Suppose A,B ∈ Rn×n are symmetric matrices satisfying AB +BA = Idn. Show
that for all vectors v ∈ Rn\{000n},

max

{
∥Av∥2
∥v∥2

,
∥Bv∥2
∥v∥2

}
≥ 1/

√
2.

Problem 10. Let A = (ai,j) be a n× n real matrix whose diagonal entries ai,i satisfy ai,i ≥ 1 for all i ∈ 1, . . . , n. Suppose also that∑
i ̸=j

a2i,j < 1.

Prove that the inverse matrix A−1 exists.

Problem 11 (Greshgorin circle theorem). Let A ∈ Cn×n with entries aij . For i ∈ {1, . . . , n} let Ri be the sum of the absolute
values of the non-diagonal entries in the i-th row:

Ri :=
∑
j ̸=i

|aij |.

Let D(aii, Ri) ⊆ C be a closed disc centered at aii with radius Ri, called a Gershgorin disc. Show that every eigenvalue of A lies
within at least one of the Gershgorin discs.
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Problem 12. Let A =

 1 0 0
1/2 1/2 0
1/3 1/3 1/3

. Find limn→∞ An. Hint: the eigenvalues of a lower triangular matrix are its diagonal

entries.

Problem 13. Let A,B be n× n matrices. Show that BA and AB have the same eigenvalues if A is invertible

Problem 14. Let A = (aij) be a 2× 2 real matrix such that

a211 + a212 + a221 + a222 <
1

1000
.

Prove that Id2×2 +A is invertible.

Problem 15. Let A ∈ Rn×n be a real symmetric n× n matrix and let λ1 ≥ · · · ≥ λn be its eigenvalues in decreasing order. Show
that

λk ≤ max
U :dim(U)=k

min
x∈U :∥x∥2=1

⟨Ax, x⟩.

The maximum above is over all k-dimensional subspaces U of Rn. Hint: form an orthonormal basis of eigenvectors to make U .

Problem 16. For a vector v ∈ Rn\{000n}, define the map F : Rn → Rn via F (x) = argmin
z∈Span(v)

∥z − x∥2. Compute F explicitly in terms

of v. Is F : Rn → Rn a linear transformation?

Problem 17. Suppose A ∈ Rn×n and A = AT with all eigenvalues of A being positive. Show there exists a matrix B such that
B2 = A.

Problem 18. Let A ∈ Rn×n and let {σi}ni=1 be the singular values of A. Show that |det(A)| =
∏n

i=1 σi.

Problem 19 (low-rank approximation). Let A ∈ Rm×n matrix and for a positive integer p < rank(A), define Ap =
∑p

i=1 σiuiv
T
i

where σi is the i-th (largest) singular value of A, and ui, vi are respective left/right singular vectors, i.e. the SVD is A = UΣV T .
Then, prove that

sup
x:∥x∥2=1

∥(A−Ap)x∥2 = σp+1.

Problem 20. Suppose P ∈ Rn×n is a symmetric matrix that satisfies P 2 = P , a so-called idempotent matrix. Find all the
eigenvalues of P with their (algebraic) multiplicities in terms of P .

Problem 21. Suppose that Σ is the covariance matrix of k zero-mean random variables X1, . . . , Xk, i.e. if X = (X1, . . . , Xk) then
Σ := E[XXT ]. Prove that if Σ is singular, then X1, . . . , Xk are linearly dependent almost everywhere.
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