
Review Session 3 – Multiple Random Variables

References/suggested reading

(i) Casella & Berger’s Statistial Inference, chapter 4.

1 Joint and Marginal Distributions

Last week, we discussed random variables, their transformations, and associated quantities. Here, we will extend these notions
to multiple dimensions. We start with the notion of a random vector, which is the multivariate generalization of a random
variable.

Definition 1.1 (random vector). An n-dimensional random vector is a function from a sample space S into Rn.

Example 1.2
Consider the experiment of tossing two fair dice. The sample space for this experiment has 36 equally likely points. With
each of these 36 points, we can associate two numbers X and Y , where X is the sum of the two dice and Y is the absolute
difference of the two dice. Then, (X,Y ) is a bivariate random vector.

In the ensuing discussion, we will define notions such as pmf/pdf, expectations, transformations, etc. mostly for bivariate
random vectors (X,Y ). The analogous notions for higher dimensions follow straightforwardly. Let’s start with the case where
X,Y are discrete.

Definition 1.3 (discrete random vector). The random vector (X,Y ) is called discrete if it only has a countable number of possible
values.

We can now extend the notion of a pmf to multiple dimensions.

Definition 1.4 (joint pmf). Associated with a discrete bivariate random vector (X,Y ) is the joint probability mass function (pmf)
which is a function f : R2 → R defined by

f(x, y) = P(X = x, Y = y).

We often denote it as fX,Y (x, y) to emphasize it is the joint pmf of the random vector (X,Y ) (as opposed to some other vector).

Just as in the univariate setting, the joint pmf of (X,Y ) completely defines the probability distribution of the random vector
(X,Y ). It can further be used to compute the probability of any event defined in terms of (X,Y ). More concretely, for any subset
A ⊆ R2, we have

P((X,Y ) ∈ A) =
∑

(x,y)∈A

f(x, y),

where we interpret this sum as being a countable sum since f(x, y) > 0 for only a countable number of values. Following this
analogy, the law of the unconscious statistician also has an multivariate analogue:

E[g(X,Y )] =
∑

(x,y)∈R2

g(x, y) · f(x, y).

Given a probability model for a random vector (X,Y ), we may often only be interested in events involving only one of the
random variables in the vector, i.e. we want to compute P(X = 2). The variable X is itself a random variable (being a function
S → R), so we can speak about its own pmf fX(x) = P(X = x). We will call this the marginal pmf of X within the context of the
joint distribution of vector (X,Y ). The marginal pmf can be obtained from the joint pmf by summing out the other variable(s):
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Theorem 1.5
Let (X,Y ) be a discrete bivariate random vector with joint pmf fX,Y (x, y). Then, the marginal pmfs of X and Y , fX(x) :=
P(X = x) and fY (y) = P(Y = y) are given by

fX(x) =
∑
y∈R

fX,Y (x, y)

fY (y) =
∑
x∈R

fX,Y (x, y).

The above sums of course are understood as being over a countable set of y’s or x’s.

One commonly misunderstood point is that the marginal distributions of X and Y , described by the marginal pmf’s fX(x) and
fY (y), do not completely describe the joint distribution of X and Y . Let’s see an example of this.

Example 1.6 (same marginals, different joint pmf)
Define a joint pmf by

f(0, 0) =
1

12
, f(1, 0) =

5

12
, f(0, 1) = f(1, 1) =

3

12
, f(x, y) = 0 for all other values.

We can verify the marginal pmf of Y is fY (0) = f(0, 0)+f(1, 0) = 1
2 and fY (1) = f(0, 1)+f(1, 1) = 1

2 . Meanwhile, the marginal
pmf of X is fX(0) = 1

3 and fX(1) = 2
3 . Now, consider the alternative pmf g(x, y) defined by

g(0, 0) = g(0, 1) =
1

6
, g(1, 0) = g(1, 1) =

1

3
, g(x, y) = 0 for all other values.

Then, we see that the marginal pmfs gX(x), gY (y) satisfy gX(x) = fX(x) and gY (y) = fY (y) for all x, y. But, clearly gX,Y and
fX,Y are distinct joint distributions.

Note that the converse point holds: if two random vectors have the same joint distribution, then their marginals coincide in
distribution.

If X and Y are continuous random variables, then the joint pdf, expectation, and marginal pdf can be defined analogously. In
this case, we call (X,Y ) a continuous random vector.

Definition 1.7 (joint pdf, expectation, marginal pdf). A function f : R2 → R is called a joint probability density function or joint pdf
of the continuous bivariate random vector (X,Y ) if, for every A ⊂ R2:

P((X,Y ) ∈ A) =

∫ ∫
A

f(x, y) dx dy.

Here, the notation “
∫ ∫

A
” simply means that the limits of integration are set so that the function is integrated over all (x, y) ∈ A.

You may recall from your multivariate calculus course that it is not always obvious what these limits should be for complicated
non-rectangular sets A. We’ll later see how to transform these multiple integrals into a more convenient form in these situations.

The expectation of a function of a continuous random vector g(X,Y ) is defined as

E[g(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y) dx dy.

The marginal pdf’s of X and Y are obtained by integrating out the other variable:

fX(x) =

∫ ∞

−∞
f(x, y) dy

fY (y) =

∫ ∞

−∞
f(x, y) dx.
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Similar to the characterization of a univariate pdf, we have that any function f(x, y) satisfying f(x, y) ≥ 0 for all (x, y) ∈ R2 and

1 =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy,

is the joint pdf of some continuous bivariate random vector (X,Y ).

Recall that the cumulative distribution function (cdf) was another way of characterizing the distribution of a random variable.
This can also be generalized to a random vector.
Definition 1.8 (joint cdf). The joint cdf of a random vector (X,Y ) (which may be either continuous or discrete) is the function

F (x, y) := P(X ≤ x, Y ≤ y).

For a continuous bivariate random vector, we have the relationship:

F (x, y) =

∫ x

−∞

∫ y

−∞
f(s, t) dt ds =⇒ ∂2F (x, y)

∂x∂y
= f(x, y).

Remark 1.9. You might find it peculiar that we defined F by integrating with respect to Y first, and then X. What if we had integrated in
the other order: ∫ y

−∞

∫ x

−∞
f(s, t) ds dt ?

It turns out this is the same multivariate integral (and thus equal to F (x, y)) due to a result known as Tonelli’s theorem, which allows
us to switch the order of integration. You will learn about Tonelli’s theorem in your probability theory course. This also allows us to
conclude that the pdf can be obtained from the joint cdf by differentiating in a different order:

f(x, y) =
∂2F (x, y)

∂x∂y
=

∂2F (x, y)

∂y∂x
.

You might recall this latter fact as Clairaut’s theorem from multivariate calculus.

2 Conditional Distributions and Independence

Often times when two random variables, (X,Y ), are observed, the values of the two variables are related. For example, suppose
that, in sampling from a human population, X is a person’s height and Y is the same person’s weight. Then, knowledge about
X, e.g. X = 73 inches, would confer us probably knowledge about Y , i.e. Y > 150 pounds. On the other hand, sometimes
knowledge about X may give us no information about Y . Much like the conditional probabilities discussed in the previous
review section, we can capture this through conditional distributions.
Definition 2.1 (conditional pmf). Let (X,Y ) be a discrete bivariate random vector with joint pmf f(x, y) and marginal pmfs
fX(x) and fY (y). For any x such that P(X = x) = fX(x) > 0, the conditional pmf of Y given X = x is the function

f(y|x) := P(Y = y|X = x) =
f(x, y)

fX(x)
.

Similarly, the conditional pmf of X given Y = y is given by f(x|y) = P(X = x|Y = y) = f(x,y)
fY (y) .

We can verify that f(y|x) is a valid univariate pmf, i.e. f(y|x) ≥ 0 for every y and
∑

y f(y|x) = 1.

To obtain the analogue for continuous random variables X and Y , we need to be more careful. P(X = x) = 0 for every x since X
is continuous. Yet in actuality a value of X is observed. However, we can still define a conditional pdf by taking the ratio of the
joint pdf and the marginal pdf, which both capture relative likelihoods near their respective points.
Definition 2.2 (conditional pdf). Let (X,Y ) be a continuous bivariate random vector with joint pdf f(x, y) and marginal pdfs
fX(x) and fY (y). For any x such that fX(x) > 0, the conditional pdf of Y given X = x is the function

f(y|x) := f(x, y)

fX(x)
.

Similarly, the conditional pdf of X given Y = y is the function f(x|y) := f(x,y)
fY (y) for y such that fY (y) > 0.
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Like before, we can verify f(y|x) and f(x|y) are indeed pdf’s. It then follows that we have the law of the unconscious statistician
for conditional distributions:

E[g(Y )|X = x] =

{∑
y g(y)f(y|x) X,Y are discrete∫∞

−∞ g(y)f(y|x) dy X, Y are continuous.

This will serve useful as the conditional expectation, E[Y |X], is a quantity which appears in many applications (e.g., linear
regression, Bayes estimation).

We can also define the conditional variance of Y given X = x, which is the variance of the conditional distribution:

Var(Y |X = x) = E[Y 2|X = x]− (E[Y |X = x])2.

Note that the conditional distribution of Y given X = x is possibly a different probability distribution for each value of x. Thus,
the conditional “Y |X” really refers to a family of probability distributions, one for each x ∈ X .

Along this same line of thought, the conditional expectation E[g(Y )|X = x] is now a function of x.

However, sometimes, the conditional distribution of Y given X = x will be the same for different values of x. In fact, if this is the
case, this univariate distribution will coincide with the marginal distribution of Y (i.e., have pdf/pmf fY (y)). This is akin to the
way we defined independence in the previous review session.

Definition 2.3 (independence). Let (X,Y ) be a bivariate random vector with joint pdf or pmf f(x, y) and marginal pdf/pmf fX(x)
and fY (y). Then, X and Y are called independent random variables if, for every x ∈ R and y ∈ R:

f(x, y) = fX(x)fY (y).

Now, what does this say about the conditional pdf/pmf f(y|x)? As expected, we have

f(y|x) = f(x, y)

fX(x)
= fY (y).

Similarly, f(x|y) = fX(x).

This notion of independence can be difficult to check if the marginals fX(x) and fY (y) are tedious to compute. Luckily, there is a
much simpler criterion which is much faster to verify.

Theorem 2.4
Let (X,Y ) be a bivariate random vector with joint pdf or pmf f(x, y). Then, X and Y are independent random variables iff
there exist functions g(x) and h(y) such that, for every x, y ∈ R,

f(x, y) = g(x)h(y)

Proof. We will show this for continuous X,Y . The proof for discrete X,Y is identical with integrals replaced by sums. The “only
if” part is clear since we can let g(x) = fX(x) and h(y) = fY (y). Conversely, suppose f(x, y) = g(x)h(y) for all x, y ∈ R. Then, we
can verify that the marginals pdf satisfty

fX(x) =

∫ ∞

−∞
f(x, y) dy =

∫ ∞

−∞
g(x)h(y) dy = g(x) ·

∫ ∞

−∞
h(y) dy

fY (y) = h(y) ·
∫ ∞

−∞
g(x) dx.
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Then,

f(x, y) = g(x)h(y) · 1

= g(x)h(y)

∫
R2

f(x, y) d(x, y)

= g(x)h(y)

∫
R2

g(x)h(y) dx dy

=

(
g(x) ·

∫
R
h(y) dy

)(
h(y) ·

∫
R
g(x) dx

)
= fX(x)fY (y).

Thus, X,Y are independent. ■

Here is another way to check for independence just by looking at the support of the joint pdf.

Theorem 2.5
If f(x, y) is a joint pdf or pmf and the set where f(x, y) > 0 cannot be given as a cross-product (i.e., A×B for some A ⊆ R
and B ⊆ R), then it turns out that X and Y with joint pdf or pmf f(x, y) are not independent.

Proof. If X,Y were independent random variables, then it would be clear that f(x, y) > 0 on the set {(x, y) : x ∈ A, y ∈ B}
where A = {x : fX(x) > 0} and B = {y : fY (y) > 0}. In fact, this must be the only set of x’s where f(x, y) > 0 since
f(x, y) > 0 =⇒ fX(x), fY (y) > 0. Thus, f(x, y) > 0 on A×B, a contradiction. ■

Two random variables X,Y are independent if, intuitively, information about one of them does not affect the realization of the
other. This intuition carries through for many of the familiar properties of a random variable:

Theorem 2.6
Let X and Y be independent random variables.

1. For any A ⊂ R, B ⊂ R,
P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B)

that is, the events {X ∈ A} and {Y ∈ B} are independent events.

2. Let g(x) be a function only of x and h(y) be a function only of y. Then,

E[g(X)h(Y )] = E[g(X)]E[h(Y )]

The converse is true if the above holds for all bounded almost surely continuous g, h.

Proof. We can show the second part by splitting up the double integral into a product of two univariate integrals:

E[g(X)h(Y )] =

∫
R2

g(x)h(y)f(x, y) dx dy =

(∫
R
h(y)fY (y) dy

)
·
(∫

R
g(x)fX(x) dx

)
= E[h(Y )]E[g(X)].

The first part can then be shown from the second part by letting g(x) = 111{x ∈ A}, h(y) = 111{y ∈ B} (i.e., the indicator functions
over the sets A and B) so that

P(X ∈ A, Y ∈ B) = E[111{x ∈ A} · 111{y ∈ B}] = E[g(X)h(Y )] = E[g(X)]E[h(Y )] = P(X ∈ A)P(Y ∈ B).

■

One immediate application of the previous theorem is that the mgf of the sum of independent random variables X + Y is the
product of the mgf’s:
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Theorem 2.7 (mgf of independent sum factors)
Let X and Y be independent random variables with moment generating functions MX(t) and MY (t). Then the moment
generating function of the random variable Z = X + Y is given by

MZ(t) = MX(t)MY (t)

3 Bivariate Transformations

Next, we will focus on bivariate transformations (X,Y ) 7→ (U, V ) where U = g1(X,Y ) and V = g2(X,Y ) are univariate transforma-
tions of the random vector (X,Y ). Let’s suppose that the transformation (x, y) 7→ (g1(x, y), g2(x, y)) is bijective and differentiable.
We have that if B ⊆ R2, then (U, V ) ∈ B iff (X,Y ) ∈ A where A := {(x, y) : (g1(x, y), g2(x, y)) ∈ B}. Thus,

P((U, V ) ∈ B) = P((X,Y ) ∈ A) =⇒
∫
B

fU,V (u, v) d(u, v) =

∫
A

fX,Y (x, y) d(x, y).

Thus, the joint pdfs fU,V (u, v) and fX,Y (x, y) must be related through the change of variables procedure for (x, y) 7→ (u, v). In
one dimension, recall from the previous review session that this involved the derivative of the transformation g. However, now
there are two transformations g1 and g2.

In the “Linear Algebra” review session, we introduced the determinant of a matrix A as the volume of a parallelogram spanned
by the rows of A. When A is the inverse Jacobian matrix the determinant is

det

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
=

∂x

∂u
· ∂y
∂v

− ∂y

∂u
· ∂x
∂v

=: J.

Then, the rectangle of differentials in X,Y space with area dx× dy goes to a parallelogram in U, V space with area roughly the
determinant of the Jacobian J . Thus, we should have d(x, y) = |J | · d(u, v) and

fU,V (u, v) = fX,Y (h1(u, v), h2(u, v))|J |,

where (u, v) 7→ (h1(u, v), h2(u, v) is the inverse transformation of (x, y) 7→ (g1(x, y), g2(x, y)).
Remark 3.1. Sometimes it may occur that there is only one function U = g1(X,Y ) of interest. If another convenient function V = g2(X,Y )
can be chosen so that the resulting transformation from (X,Y ) to (U, V ) is one-to-one on the support of fX,Y (x, y), then the joint pdf of
(U, V ) can be derived using the result from before and the marginal pdf of U can be obtained by integrating the joint pdf. For example, if
U = XY , we can choose V = X or V = Y so that the resulting transformation (X,Y ) 7→ (U, V ) is one-to-one.

Remark 3.2. We clearly generalized the pdf transformation law from the previous review session here. Yet you may notice that we
did not make any explicit requirement that g1 or g2 be monotone, unlike in the univariate setting. Does this mean the univariate pdf
transformation law holds for non-monotonic functions? It turns out that every continuous bijective function is in fact monotonic. Try to
prove this or draw a picture to convince yourself. Thus, since we assume the transformation is differentiable and bijective, we are in fact
working with monotonic transformations when using this result in one dimension.

What about the transformation of independent random variables? If X,Y are independent, then any modification of them
g(X), h(Y ) should also be independent.

Theorem 3.3
Let X and Y be independent random variables. Let g(x) be a function only of x and h(y) be a function only of y. Then the
random variables U = g(X) and V = h(Y ) are independent.

Proof. We have the joint cdf of (U, V ) is

FU,V (u, v) = P(g(X) ≤ u, h(Y ) ≤ v) = P(g(X) ≤ u)P(h(Y ) ≤ v) =⇒ fU,V (u, v) =
∂2

∂u∂v
FU,V (u, v) = g̃(u) · h̃(v).

Thus, since the joint pdf fU,V (u, v) factors, U, V are independent. ■
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Example 3.4 (ratio of Gaussians)
Let X,Y be independent N (0, 1) random variables. Consider the transformation U = X/Y and V = |Y | (for Y = 0, we can
let (U, V ) = (1, 1) or any value since P(Y = 0) = 0 and so this case is negligible). This transformation is not one-to-one, but
is one-to-one when restricted to either positive or negative values of y. Let

A1 = {(x, y) : y > 0}, A2 = {(x, y) : y < 0}, A0 = {(x, y) : y = 0}

which partition A = R2. For either A1 or A2, if (x, y) ∈ Ai, v = |y| > 0 and for a fixed v = |y|, u = x/y can be any real number.
Thus,

B = {(u, v) : v > 0}

The inverse transformations from B to A1 and B to A2 are given by (u, v) 7→ (uv, v) and (u, v) 7→ (−uv,−v). The determinants
of both Jacobians are v. Then, using the fact that

fX,Y (x, y) =
1

2π
e−x2/2e−y2/2

we have using our transformation law:

fU,V (u, v) =
v

π
e−(u2+1)v2/2, u ∈ R, v ∈ (0,∞)

From this the marginal pdf of U can be computed to be (via a change-of-variables and recognizing the integrand is
proportional to an exponential pdf):

fU (u) =

∫ ∞

0

v

π
e−(u2+1)v2/2 dv =

1

π(u2 + 1)
, u ∈ R

You may recognize this last formula as the pdf of a Cauchy distribution. Thus, the ratio of two independent standard normal
random variables is a Cauchy random variable.

4 Hierarchical Models and Mixture Distributions

In the cases we have seen thus far, a random variable has a single distribution, possibly depending on parameters. More
generally, we can think of these parameters as also following a distribution, giving a hierarchical model. This is a setting where
it is particularly important to make correct use of conditional and joint distributions. Here are two useful identities that often
come in play:

Theorem 4.1 (law of iterated expectation, or tower property)
If X,Y are any two random variables, then

E[X] = E[E[X|Y ]],

provided that the expectations exist.

Proof. Letting f(x, Y ) denote the joint pdf of X,Y , we have

E[X] =

∫ ∫
xf(x, y) dx dy =

∫ [∫
xf(x|y) dx

]
fY (y) dy = E[E[X|Y ]].

■
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Theorem 4.2 (law of total variance)
For any two random variables X,Y

Var(X) = E[Var(X|Y )] + Var(E[X|Y ])

provided that the expectations exist.

Proof. This is another one of those proofs where we decompose a square error as a sum of two squares:

Var(X) = E[(X − E[X])2] = E[(X − E[X|Y ] + E[X|Y ]− E[X])2] = E[(X − E(X|Y ))2] + E[(E(X|Y )− E[X])2].

We obtained the last term by expanding the square and applying the linearity of expectation. Why did the cross term disappear?
We can finish by verifying

E[(X − E(X|Y ))2] = E[E[(X − E[X|Y ])2|Y ]] = E[V ar(X|Y )]

E[(E(X|Y )− E[X])2] = Var(E[X|Y ]).

■

Example 4.3 (binomial-poisson hierarchy)
An insect lays a large number of eggs, each surviving with probability p. On the average, how many eggs will survive? Let
the “large number” of eggs laid be a random variable Y ∼ Poisson(λ) and let the number of survivors be a random variable
X. Assuming each egg’s survival is independent, we have X|Y ∼ binomial(Y, p). This gives a hierarchical model. We have

P(X = x) =

∞∑
y=0

P(X = x, Y = y)

=

∞∑
y=0

P(X = x|Y = y)P(Y = y)

=

∞∑
y=x

((
y

x

)
px(1− p)y−x

)
·
(
e−λλy

y!

)

=
(λp)xe−λ

x!

∞∑
y=x

((1− p)λ)y−x

(y − x)!

=
(λp)xe−λ

x!

∞∑
t=0

((1− p)λ)t

t!
(t = y − x)

=
(λp)xe−λ

x!
e(1−p)λ

=
(λp)x

x!
e−λp

so that X ∼ Poisson(λp). Thus, E[X] = λp to answer the original question.

We can also determine this much more quickly from the law of iterated expectation

E[X] = E[E[X|Y ]] = E[pY ] = pλ
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Example 4.4
Consider a generalization of Example 4.3, where instead of one mother insect there are a large number of mothers and
one mother is chosen at random. Let X be the number of survivors in a litter; then

X|Y ∼ binomial(Y, p)
Y |Λ ∼ Poisson(Λ)

Λ ∼ exponential(β)

where the last stage of the hierarchy accounts for the variability across different mothers. The mean of X is then

E[X] = E[E[X|Y ]] = E[pY ] = E[E[pY |Λ]] = E[pΛ] = pβ

5 Covariance and Correlation

We’ve discussed the absence or presence of a relationship between two random variables by speaking of independence vs.
non-independence. However, we’d like a more refined quantity that describes the strength of the relationship. This leads us to
covariance and correlation. Intuitively, it describes whether greater or lesser values of one variable correspond to greater or
lesser values of another variable. For example, if X is the weight of a human and Y is the height of that same human, then we
might expect X and Y to generally increase and decrease together across a sample of people, but not all the time.
Notation 5.1. Henceforth, let E[X] =: µX ,E[Y ] =: µY ,VarX =: σ2

X ,VarY =: σ2
Y . Also, assume that σ2

X , σ2
Y ∈ (0,∞).

Definition 5.2 (covariance). The covariance of X and Y is the number defined by
Cov(X,Y ) = E[(X − µX)(Y − µY )] = E[XY ]− µX · µY .

Definition 5.3 (correlation). The correlation of X and Y is the number defined by

ρXY :=
Cov(X,Y )

σXσY

The value ρXY is also called the correlation coefficient.

Theorem 5.4
If X,Y are independent random variables, then Cov(X,Y ) = 0 and ρXY = 0.

Proof. If X,Y are independent, E[XY ] = E[X]E[Y ] =⇒ Cov(X,Y ) = 0. ■

A natural question that arises is whether uncorrelated random variables, i.e. Cov(X,Y ) = 0, are independent. It turns out that
this not the case in general.

Example 5.5 (uncorrelated but dependent random variables)
Let X ∼ Unif(−1, 1) and let Y = X2. Then, X,Y are clearly dependent, but

Cov(X,Y ) = E[X3]− E[X2]E[X] = 0− 1/3 · 0 = 0.

How is the covariance related to the similarly named variance? Letting X = Y , we can see from the formula that Cov(X,X) =
Var(X). We also have that the term Cov(X,Y ) appears when computing the variance of a linear combination Var(aX + bY ).

Theorem 5.6
If X,Y are any two random variables and a, b are any two constants, then

Var(aX + bY ) = a2 VarX + b2 VarY + 2abCov(X,Y )

Page 9



Core Competency Review Session 3

Proof.

Var(aX + bY ) = E[(aX + bY )− (aµX + bµY ))
2] = a2E[(X − µX)2] + b2E[(Y − µY )

2] + 2abE[(X − µX)(Y − µY )].

■

Theorem 5.7
For any random variables X,Y ,

1. −1 ≤ ρXY ≤ 1

2. |ρXY | = 1 iff there exist a ̸= 0 and b such that P(Y = aX + b) = 1. If ρXY = 1, then a > 0 and if ρXY = −1, then a < 0.

The covariance can also be thought of as an inner product for random variables.

Theorem 5.8
The covariance Cov(·, ·) satisfies the following properties.

(1) Bilinearity: Cov(aX + bY, Z) = a · Cov(X,Z) + b · Cov(Y, Z).

(2) Symmetry: Cov(X,Y ) = Cov(Y,X).

(3) Positive Semi-definite: Cov(X,X) ≥ 0 for all random variables X and Cov(X,X) = 0 implies X is constant a.s.

6 Mutual Independence

Most of the results we’ve derived so far extend naturally to higher dimensions beyond 2. For independence, we have to be more
careful. Recall from the previous review session that the mutual independence of multiple events was defined in a rather strong
way.
Notation 6.1. We will use boldface letters to denote multiple variates. Thus, we write X to denote the random variables
X1, . . . , Xn and x to denote observations x1, . . . , xn.
Definition 6.2 (mutual independence). Let X1, . . . ,Xn be random vectors with joint pdf or pmf f(x1, . . . ,xn). Let fXi

(xi) denote
the marginal pdf or pmf of Xi. Then X1, . . . ,Xn are called mutually independent random vectors if, for every (x1, . . . ,xn),

f(x1, . . . ,xn) = fX1
(x1) · · · fXn

(xn) =

n∏
i=1

fXi
(xi)

If the Xi’s are all one-dimensional, then X1, . . . , Xn are called mutually independent random variables.

Remark 6.3. Note that we did not need to mandate that f(xi1 , . . . ,xik ) = fXi1
(xi1) · · · fXik

(xik ) for every subset {i1, . . . , ik} ⊆ {1, . . . , n},
like we did for defining mutual independence of events. This in fact automatically follows from the above definition. Do you see why?
Hint: think about how the marginal pdf fXi1

,...,Xik
(xi1 , . . . ,xik ) is obtained.

Example 6.4
Pairwise independence of random variables does not imply mutual independence. Consider the probability space Ω = [4]
with probability measure placing mass 1/4 at each of the four points. The indicator over the events {1, 2}, {2, 3}, {1, 3} are
pairwise independent but not mutually independent.

Mutually independent random variables behave much like independent random variables. The properties we derived earlier
easily generalize:

Page 10



Core Competency Review Session 3

Theorem 6.5
Let X1, . . . , Xn be mutually independent random variables. Let g1, . . . , gn be real-valued functions such that gi(xi) is a
function only of xi, for i = 1, . . . , n. Then

E[g1(X1) · · · gn(Xn)] = E[g1(X1)] · · ·E[gn(Xn)].

Additionally, if MX1
(t), . . . ,MXn

(t) are the mgf’s of X1, . . . , Xn, respectively, and Z := X1 + · · ·+Xn, then the mgf of Z is

MZ(t) = MX1
(t) · · ·MXn

(t).

Theorem 6.6
X1, . . . ,Xn are mutually independent random vectors iff there exist functions gi(xi) for i = 1, . . . , n such that the joint
pdf/pmf of (X1, . . . ,Xn) can be written as

f(x1, . . . ,xn) = g1(x1) · · · gn(xn).

Additionally, if X1, . . . ,Xn are mutually independent random vectors, and if hi(xi) is a function only of xi for i = 1, . . . , n,
then the random variables Ui := gi(Xi) are mutually independent.

7 Inequalities involving multiple random variables

Like in the previous review session, we will finish by discussing some common inequalities, now involving multiple random
variables.

Theorem 7.1 (Hölder’s Inequality)
Let X,Y be any two random variables, and let p, q satisfy p−1 + q−1 = 1. Then,

|E[XY ]| ≤ E[|XY |] ≤ (E[|X|p])1/p(E[|Y |q])1/q

Theorem 7.2 (Cauchy-Schwarz Inequality)
For any two random variables X,Y

|E[XY ]| ≤ E[|XY |] ≤ (E[|X|2])1/2(E[|Y |2])1/2

Example 7.3 (covariance inequality)
Let X,Y have means µX , µY and variances σ2

X , σ2
Y , respectively. We can apply Cauchy-Schwarz to get

E[|(X − µX)(Y − µY )|] ≤ (E[(X − µX)2])1/2(E[(Y − µY )
2])1/2 =⇒ Cov(X,Y )2 ≤ σ2

Xσ2
Y

This also shows the correlation coefficient ρ indeed satisfies ρ2 ∈ [0, 1].

Example 7.4 (Liapounov’s Inequality)
Setting Y ≡ 1 in Cauchy-Schwarz gives E[|X|] ≤ (E[|X|p])1/p for p ∈ (1,∞). Replacing |X| by |X|r and letting s = pr (so that
s > r) we get

E[|X|r]1/r ≤ E[|X|s]1/s, 1 < r < s < ∞
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Theorem 7.5 (Minkowski’s Inequality)
Let X,Y be any two random variables. Then for 1 ≤ p < ∞.

E[|X + Y |p]1/p ≤ E[|X|p]1/p + E[|Y |p]1/p

Theorem 7.6 (covariance and monotone functions inequality)
Let X be any random variable and g(x), h(x) any functions such that E[g(X)], E[h(X)], E[g(X)h(X)] exist.

1. If g(x) is nondecreasing and h(x) is nonincreasing, then

E[g(X)h(X)] ≤ E[g(X)]E[h(X)]

2. If g(x), h(x) are either both nondecreasing or both nonincreasing, then

E[g(X)h(X)] ≥ E[g(X)]E[h(X)]

The intuition behind these inequalities is that in the first case, there is a negative correlation between g and h while in the
second case, there is a positive correlation.
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8 Problems

8.1 Previous Core Competency Problems

Problem 1 (2018 Summer Practice, # 12). Suppose that U1, U2
i.i.d.∼ U(0, 1). Let V1 := max(U1, U2), V2 := min(U1, U2).

(a) Find P(V1 ≥ x, V2 ≤ y), where x, y ∈ [0, 1].

(b) Hence or otherwise find the joint density for (V1, V2).

(c) Hence or otherwise compute E(V 2
1 + V 2

2 ).

Problem 2 (2018 Summer Practice, # 13). Suppose X1, X2, X3
i.i.d.∼ N(0, 1). Let (Y1, Y2, Y3) be defined as follows:Y1

Y2

Y3

 =


1√
3

1√
3

1√
3

1√
2

− 1√
2

0
1√
6

1√
6

− 2√
6


X1

X2

X3


(a) Find the joint distribution of (Y1, Y2, Y3).

(b) Show that Y 2
1 + Y 2

2 + Y 2
3 = X2

1 +X2
2 +X2

3 .

(c) Hence or otherwise derive the distribution of (X1 −X)2 + (X2 −X)2 + (X3 −X)2, where X = X1+X2+X3

3 .

Problem 3 (2019 September, # 4). Let X1, . . . , Xn be a random sample (i.i.d.) from a density function f . The corresponding CDF
is denoted by F . Denote by X(1) < · · · < X(n) the order statistics, i.e. a rearrangement of X1, . . . , Xn according to their values.

(i) For n = 2, derive the density function of X(1) in terms of f and F . [Hint: You may want to find the distribution function of
X(1) first.]

(ii) For n = 3, derive the density function of X(2) in terms of f and F .

(iii) For any n and k, derive the density function of X(k) in terms of f and F .

Problem 4 (2020 May, # 1). Suppose we have a random variable ξ ∼ Uniform(0, 1). Suppose that conditioning on ξ, we have
i.i.d. Bernoulli(ξ) random variables X1, X2, . . . , Xn, Xn+1, i.e. P (Xi = 1|ξ) = 1− P (X = 0|ξ) = ξ. Calculate

P (Xn+1 = 1|X1, . . . , Xn).

Problem 5 (2020 May, # 4). Let Z1, Z2, Z3 be i.i.d. N(0, 1) random variables. Let R =
√

Z2
1 + Z2

2 + Z2
3 .

(i) Find the distribution of R and write down its density function.

(ii) Suppose that we have two independent random variables X ∼ Gamma(α, λ) and Y ∼ Gamma(β, λ), where α, β, λ > 0. Let

U = X + Y and V =
X

X + Y
.

Find the joint density (p.d.f.) of (U, V ) and identify the joint distribution (c.d.f.).
Hint: density function of Gamma(α, λ) = λαxα−1e−λx/Γ(λ).

Problem 6 (2020 September, # 4). Suppose we generate U ∼ Unif[0, 3]. Let V denote the value of the integer nearest to U (so V
takes values in {0, 1, 2, 3}). Let X denote the rounding error i.e. the absolute distance between U and V .

(a) What is the distribution of V ?

(b) What is the distribution of the X.

(c) Are X and V independent?

(d) Are X and U independent?
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Problem 7 (2021 May, # 4). The joint pdf fX,Y (a, b) of a random variable X and Y is zero outside the triangular region shown
below and is equal to a fixed number γ on the triangular region.

Answer the following questions:

(i) Calculate the value of γ.

(ii) Are X and Y independent? Prove your answer and then give an intuitive explanation.

(iii) Calculate Cov(X,Y ). Does the result you obtain make sense?

(iv) Calculate the joint CDF of two random variables Z = X + Y and W = X − Y .

8.2 Additional Practice

Problem 8 (Casella & Berger, Exercise 4.17). Let X be an exp(1) random variable, and define Y to be the integer part of X + 1,
i.e. Y = ⌊X + 1⌋.

(a) Find the distribution of Y .

(a) Find the conditional distribution of X − 4 given Y ≥ 5.

Problem 9 (Casella & Berger, Exercise 4.54). Find the pdf of
∏n

i=1 Xi where the Xi’s are independent Unif([0, 1]) random variables.
Hint: try to calculate the cdf, and remember the relationship between uniforms and exponentials.

Problem 10 (Casella & Berger, Exercise 4.59). For any three random variables X,Y, Z with finite variances, prove that

Cov(X,Y ) = E[Cov(X,Y |Z)] + Cov(E[X|Z],E[Y |Z]),

where Cov(X,Y |Z) is the covariance of X and Y conditional on Z.
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