
Review Session 4 – Multivariate Gaussians and Random Samples

1 Gaussian Random Vectors

Gaussian random variables and Gaussian random vectors play a central role in statistical theory. This stems from the observation
that many noise-like quantities in real world applications appear to behave as Gaussians. Another, perhaps more important
reason, is that Gaussian random variables turn out to be remarkably easy to work with and give rise to many elegant, exact
results without requiring asymptotics. A third reason why Gaussians are important is that often the estimation/detection
problems in the specific Gaussian case greatly inform us about other more general cases. For example, the minimum mean
square estimator for Gaussian distributions is the same, and has the same mean square performance, as the linear least squares
estimator for other problems with the same mean and covariance. In many cases, first insights into a difficult statistical problem
come from understanding the simplified Gaussian problem.

1.1 Preliminaries

The covariance matrix (also known as the variance matrix) of a random vector X ∈ Rp is a square matrix giving the covariance
between each pair of components of X:

Cov(X) has (i, j)-th entry Cov(Xi, Xj).

It is sometimes written as Var(X) instead since it is really the analogue of the variance of a random variable. Indeed, we may
write

Cov(X) = E[(X − E[X])(X − E[X])T ] = E[XXT ]− E[X] · E[X]T .

The covariance matrix is a p.s.d. and symmetrix matrix. Furthermore, it behaves similarly to the variance. For a linear
transformation of X, AX + b where A ∈ Rm×p and b ∈ Rm,

Cov(AX + b) = ACov(X)AT .

More generally, the cross-covariance of two random vectors X ∈ Rp, Y ∈ Rq (where p and q are not necessarily the same
dimension) is defined as

Cov(X,Y ) := E[(X − E[X])(Y − E[Y ])T ] = E[XY T ]− E[X] · E[Y ]T .

Thus, Cov(X,Y ) is a p× q matrix. It behaves similarly to the covariance of random variables:

1. Cov(X,Y ) = Cov(Y,X)T .

2. Cov(X,X) = Cov(X).

3. Cov(X1 +X2, Y ) = Cov(X1, Y ) + Cov(X2, Y ).

4. Cov(AX + b, CY + d) = ACov(X,Y )CT for matrices A,C.

5. If X,Y are independent random vectors, then Cov(X,Y ) = 0p×q.

Now, for a fixed q × p matrix A, we have that A ·X is a linear transformation of X. Then, we have the mean and covariance
transform as follows:

1. E[AX] = AE[X].

2. Cov(AX) = ACov(X)AT .
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The moment generating function of a random vector X ∈ Rp is a multivariate function MX : Rp → R given by

MX(t) = E[et
TX ].

As in the case of the univariate mgf, we will say the mgf of X exists if MX(t) is finite in a region around zero, i.e. for all
t ∈ (−t0, t0)

p ⊆ Rp. As for random variables, the mgf characterizes the distribution of a random vector.

Now, let’s review the spectral decomposition from the first review session on linear algebra. Recall that a symmetric square
matrix Σ ∈ Rp×p has real eigenvalues {λi}pi=1 and a choice of orthogonal eigenvectors {ui}pi=1 (i.e., orthogonal ui so that
Σui = λiui). Then, letting Λ be the diagonal matrix with (i, i)-th entry λi and U be the matrix with columns u1, . . . , up, the spectral
decomposition gives us

Σ = λ1u1u
T
1 + · · ·+ λpupu

T
p = UΛUT .

Furthermore, recall that if Σ is a positive semi-definite or p.s.d. (resp. positive definite) matrix if and only if all the eigenvalues
are nonnegative (resp. positive). For p.s.d. Σ, we can define the nonnegative definite square root of Σ as Σ1/2 := UΛ1/2UT . This is
indeed a square root in the sense that Σ1/2 · Σ1/2 = Σ.

1.2 Gaussian random vectors

First, we define the standard Gaussian vector of dimension p: Z ∼ Np(0p, Idp) which has mean 0p and covariance matrix Idp: this
is the random vector Z = (Z1, . . . , Zp) such that the Zi’s are i.i.d. N (0, 1) random variables.

Now, given a generic fixed vector µ ∈ Rp and symmetric positive definite square matrix Σ ∈ Rp×p, we say that X ∼ Np(µ,Σ) if
X = µ+Σ1/2Z. In this case, we say that X is a multivariate normal or multivariate Gaussian with mean E[X] = µ and covariance
matrix Cov(X) = Σ. Note that these two facts follow from the definition of X and the linearity of the mean and covariance.

What is the density of the multivariate normal X ∼ Np(µ,Σ)? First, we can determine the density of Z, which is the joint density
of p i.i.d. standard normals:

fZ(z) = (2π)−p/2 exp

(
−1

2

p∑
i=1

z2i

)
.

Then, since X = µ+Σ1/2Z, using our multivariate pdf transformation law from the previous review session, we have that the
joint density of X1, . . . , Xp is

fX(x) = (det(2πΣ))−1/2 exp

(
−1

2
(X − µ)TΣ−1(X − µ)

)
.

This looks strikingly similar to the univariate Gaussian pdf. The variance again appears in two places: in the normalizing constant
and in the exponential now inverted. We call the inverse matrix Σ−1 the inverse covariance or the concentration matrix.

The standard Gaussian estimation problem is to find µ or Σ. For multivariate Gaussians, µ has p unknown parameters whereas
Σ has p(p+1)

2 parameters (since Σ is symmetric). Thus, the parameter space might be very large for large p. Because of this, it is
customary to reduce the number of parameters by looking at more structured cases:

• Assuming µ lies in a linear subspsace of dimension r < p.

• Assuming Σ is isotropic: Σ = σ2 · Idp×p.

• Assuming Σ is diagonal: Σ = diag(σ2
i ).

• Assuming Σ is stationary: Σij = σ(i− j) for some function σ(·).

• Assuming µ or Σ is sparse.

The contours of the multivariate Gaussian pdf fX(x) are given by the points x ∈ Rp such that

(x− µ)TΣ−1(x− µ) = c,

for some c ∈ R. This can be interpreted via the principal components transformation y = UT (x−µ) where UΛUT = Σ is the spec-
tral decomposition of (let’s assume positive definite) Σ. Then, we have the above is equivalent to yTΛ−1y = c ⇐⇒

∑p
i=1

y2
i

λi
= c.
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Thus, the contours of a multivariate Gaussian pdf are ellipses in Rp.

The moment generating function of a multivariate Gaussian X ∼ Np(µ,Σ) is

MX(t) := E[et
TX ] = et

Tµ · E[et
TΣ1/2Z ] = et

Tµ · E[e(Σ
1/2t)TZ ].

Now, (Σ1/2t)TZ = a1Z1 + · · ·+ apZp is a linear combination of independent N (0, 1) random variables. Then, E[e(Σ1/2t)TZ ] is the
mgf of the random variable (Σ1/2t)TZ evaluated at s = 1 or:

E[e(Σ
1/2t)TZ ] = M(Σ1/2t)TZ(1) =

p∏
i=1

MaiZi
(1) =

p∏
i=1

MZi
(ai) =

p∏
i=1

ea
2
i /2 = e

∑p
i=1 a2

i /2 = e∥Σ
1/2t∥2

2/2 = e
1
2 t

TΣt.

Thus,
MX(t) = et

Tµ+ 1
2 t

TΣt.

The mgf gives us another characterization of a multivariate Gaussian. In the above calculation, we essentially showed that the
mgf of multivariate Gaussian X is the univariate mgf of a linear combination of Gaussian random variables.

Theorem 1.1 (Cramér-Wold device)
X ∼ Np(µ,Σ) iff aTX ∼ N (aTµ, aTΣa) for all a ∈ Rp.

Proof. This follows from the mgf formula above. ■

Next, sums (and linear combinations) of multivariate Gaussians behave nicely just as in the one-dimensional case: if X1 ∼
Np(µ1,Σ1) and X2 ∼ Np(µ2,Σ2), then

X1 +X2 ∼ Np(µ1 + µ2,Σ1 +Σ2).

It’s sometimes useful to think about a partition of a random vector X into two components X = (X1, X2) where X1, X2 are
random vectors of smaller dimension. In the Gaussian case, where X1 ∼ Np(µ1,Σ11) and X2 ∼ Np(µ2,Σ22), and X1, X2 are jointly
Gaussian, we have (

X1

X2

)
= Np+q

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
. (1)

The covariance matrix above is a block matrix where the off-diagonal block Σ12 = ΣT
21 = Cov(X1, X2).

One special property of the Gaussian family is that the covariance/correlation characterizes independence. We showed in the
last review session that this is of course not true in general.

Theorem 1.2

Suppose X =

(
X1

X2

)
is jointly Gaussian. Then, X1 and X2 are independent iff Cov(X1, X2) = 0.

Proof. This follows from the formula for the mgf of X. If Cov(X) is a block diagonal matrix, then the mgf factors, yielding
independence. ■

A linear transformation AX of a Gaussian random vector X ∼ Np(µ,Σ) for A ∈ Rq×p is again a Gaussian random vector by the
Cramér-Wold device. The distribution is determined by the mean and covariance:

AX ∼ Nq(Aµ,AΣAT ).

One particular kind of linear transformation is a projection. For example, AX can be a projection of X onto a subset of its p
coordinates. By the above, we have that any marginal distribution of X must be Gaussian.
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Theorem 1.3

If X =

(
X1

X2

)
has a joint normal distribution, then X1 ∼ Np(µ1,Σ11) where µ1,Σ11 can be read off from the mean and

covariance of X.

Remark 1.4. The converse of the above statement is not necessarily true. Two random variables X1, X2 may be marginally Gaussian,
but not jointly Gaussian (see Problem 7).

Lastly, the conditional distribution of one Gaussian random vector conditioned on another is again Gaussian. If X1, X2 are
jointly Gaussian as in (1), then

X2|X1 = x ∼ Nq

(
µ2 +Σ21Σ

−1
11 (x− µ1),Σ22 − Σ21Σ

−1
11 Σ12

)
. (2)

We’ll give the general idea for the proof in the simpler case where X1, X2 are one-dimensional with X1 ∼ N (0, σ2
1) and X2 ∼

N (0, σ2
2). Suppose ρ := Cov(X1, X2). Then, we have conditional density

fX2|X1=x1
(x2) =

fX1,X2
(x1, x2)

fX1
(x1)

∝
exp

(
− 1

2(1−ρ2)

((
x1

σ2
1

)2
− 2ρ

(
x1

σ1

)(
x2

σ2

)
+
(

x2

σ2

)2))
exp

(
− 1

2σ2
2
x2
2

)
∝ exp

(
−1

2

(
ax2

1 + bx1x2 + cx2
2

))
,

where a, b, c are some constants in terms of σ1, σ2, ρ. Next, we “complete the square” w.r.t. the variable x2 in the quadratic above.
Essentially, to get this into the form of a Gaussian pdf, we want to factor the quadratic as something resembling (x2−d)2

e for
some constants d, e. Fortunately, we can multiply the above formula by any constant not depending on x2 since this does not
change the kernel of the pdf (and only changes the normalizing constant). Thus, we have

fX2|X1=x1
(x2) ∝ exp

(
−1

2

(
ax2

1 + bx1x2 + cx2
2 +

(
b2

4c
− a

)
x2
1

))
= exp

(
− 1

2/c
(x2 + x1b/(2c))

2

)
.

Thus, we have shown X2|X1 = x1 is Gaussian. Its mean and variance can be given in terms of σ1, σ2, ρ by following the calculations
above carefully. The proof of (2) for multivariate Gaussians is similar and also involves a “completing the square” trick.

2 Properties of a Random Sample

Often, the data collected in an experiment consist of several observations on a variable of interest (e.g., the height of persons
drawn at random from a population).

We say X1, . . . , Xn are a random sample of size n from a population density f(x) if X1, . . . , Xn are mutually independent random
variables and the marginal pdf/pmf of each Xi is the same function f(x). Another of way of saying this is that X1, . . . , Xn are
independent and identically distributed random variables with pdf/pmf f(x). This is often just abbreviated as i.i.d., or {Xi}ni=1

i.i.d.∼ f .

From a sample {X1, . . . , Xn}, we might want to obtain some summary of the values within a sample. Formally, this is a function
T : Rn → R taking as inputs X1, . . . , Xn. We call the random variable T a statistic and refer to its distribution as a sampling
distribution. The two most standard examples of a statistic are:

1. The sample mean: X := 1
n

∑n
i=1 Xi.

2. The sample variance: S2 := 1
n−1

∑n
i=1(Xi −X)2.

These are estimates or guesses for the population mean and variance, respectively, based on the sample {X1, . . . , Xn}. They
exhibit several universal properties and are particularly well-behaved in the Gaussian setting (i.e., when f is normal). Let’s first
derive some generic properties.
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Notation 2.1. Let x, s2, s denote observed values of the random variables X,S2, S :=
√
S2.

Theorem 2.2
Let x1, . . . , xn ∈ R. Then,

(i) mina
∑n

i=1(xi − a)2 =
∑n

i=1(xi − x)2

(ii) (n− 1)s2 =
∑n

i=1(xi − x)2 =
∑n

i=1 x
2
i − nx2

The proof is very similar to the analogous statements in the population setting (see Example 8 in Review Doc 2). Hint: (i) is
proven by adding and subtracting x inside each square and then expanding the square.

Theorem 2.3
Let X1, . . . , Xn be a random sample from a population with mean µ and variance σ2 < ∞. Then

(i) E[X] = µ.

(ii) Var(X) = σ2/n.

(iii) E[S2] = σ2.

Proof. (i) and (ii) follow from the linearity properties of the expectation and variance, respectively. (iii) follows from linearity of
expectation and Theorem 2.2. ■

The above theorem gives us a relationship between a statistic and the population parameter it represents. In particular, (i) and
(iii) show that X and S2 are unbiased estimators of their parameters µ and σ2, respectively. In general, we say T (X1, . . . , Xn) is
unbiased if E[T (X1, . . . , Xn)] is equal to the parameter it represents. Typically, the parameter is first identified and then the
estimator T is proposed for determining its value based on the sample.

2.1 Sampling from a Normal Distribution

When X1, . . . , Xn are sampled from a Gaussian distribution, the sample quantities X and S2 exhibit additional useful properties.
We start with two lemmas which will help us better understand the relationship between X and S2.

Lemma 2.4 (chi squared and Gaussians)
Recall χ2

p denotes a chi squared random variable with p degrees of freedom.

1. If Z ∼ N (0, 1), then Z2 ∼ χ2
1.

2. If X1, . . . , Xn are independent and Xi ∼ χ2
p, then X1 + · · ·+Xn ∼ χ2

p1+···+pn
.

Proof. The first part can be deduced from the pdf transformation law. The second part follows from an mgf computation, where
the mgf of each chi-squared Xi is (1− 2t)−pi/2. ■
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Lemma 2.5
Let Xj ∼ N (µj , σ

2
j ), j = 1, . . . , n, independent. For constants aij , brj (j = 1, . . . , n; i = 1, . . . , k; r = 1, . . . ,m), where k +m ≤ n,

define

Ui =

n∑
j=1

aijXj , i = 1, . . . , k

Vr =

n∑
j=1

brjXj , r = 1, . . . ,m

Then,

1. The random variables Ui, Vr are independent iff Cov(Ui, Vr) = 0. Furthermore, Cov(Ui, Vr) =
∑n

j=1 aijbrjσ
2
j ,

2. The random vectors (U1, . . . , Uk) and (V1, . . . , Vm) are independent iff Ui is independent of Vr for all pairs i, r (i =
1, . . . , k; r = 1, . . . ,m).

Proof. Both of these follow from the Cramér-Wold device. ■

Theorem 2.6
Let X1, . . . , Xn be a random sample from a N (µ, σ2) distribution. Then,

(i) X ∼ N (µ, σ2/n).

(ii) X and S2 are independent random variables.

(iii) (n− 1)S2/σ2 has a chi squared distribution with n− 1 degrees of freedom.

Proof. (i) is clear from properties of a Gaussian. We will show (ii) by showing that S2 can be represented as some function of the
random vector (X2 −X, . . . ,Xn −X). Then, it suffices to show (X2 −X, . . . ,Xn −X) and X are independent. First, we have

S2 =
1

n− 1

(
(X1 −X)2 +

n∑
i=2

(Xi −X)2

)
=

1

n− 1

( n∑
i=2

(Xi −X)

)2

+

n∑
i=2

(Xi −X)2

 .

The second equality is established by using the identity
∑n

i=1(Xi −X) = 0. Now, let Y1 := X and for i = 2, . . . , n, let Yi := Xi −X.
Then, S2 = g(Y2, . . . , Yn) is some function of Y1, . . . , Yn. We then claim Y1 and (Y2, . . . , Yn) are independent. In fact, by Lemma 2.5,
it suffices to show Y1 is uncorrelated with each Yi for i = 2, . . . , n. Indeed, for j > 1:

Cov(X,Xj −X) =

n∑
i=1

(
1

n

)
·
(
111{i = j} − 1

n

)
= 0.

Thus, S2 and X are independent.

To show (iii), we first assume without loss of generality that each Xi ∼ N (0, 1). This is allowed since the value of S2/σ2 =
1

σ2(n−1)

∑n
i=1(Xi −X)2 does not change under the transformation (X1, . . . , Xn) 7→

(
X1−µ

σ , . . . , Xn−µ
σ

)
. More precisely, we have

S2/σ2 =
1

n− 1

n∑
i=1

(Zi − Z)2,

where (Z1, . . . , Zn) :=
(

X1−µ
σ , . . . , Xn−µ

σ

)
and Z = 1

n

∑n
i=1 Zi are the standardized sample and standardized sample mean,

respectively.
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Thus, it remains to show
∑n

i=1(Xi −X)2 ∼ χ2
n−1 for Xi

i.i.d.∼ N (0, 1). We have

(n− 1)S2 =

n∑
i=1

X2
i − nX

2
=⇒ (n− 1)S2 + nX

2
=

n∑
i=1

X2
i .

Taking the mgf of both sides of the above and using (ii), we have

M∑n
i=1 X2

i
(t) = M(n−1)S2(t) ·M

nX
2(t).

Now, √n·X ∼ N (0, 1). Thus, from Lemma 2.4, nX2 ∼ χ2
1. Additionally, Lemma 2.4 also gives us

∑n
i=1 X

2
i ∼ χ2

n. Thus, using the fact
that mgf of a V ∼ χ2

k distribution is MV (t) = (1−2t)−k/2, we have that M(n−1)S2(t) = (1−2t)−(n−1)/2 meaning (n−1)S2 ∼ χ2
n−1. ■

If X1, . . . , Xn are a random sample from N (µ, σ2), then the standardized mean

X − µ

σ/
√
n
,

is distributed as a N (0, 1) random variable. If we knew the value of σ and measured X, we could use the standardized mean as
a basis for inference about µ, since µ would then be the only unknown quantity. However, it is often the case that µ is unknown.
This leads us to the Student’s t distribution:

X − µ

S/
√
n
.

The distribution of this random variable appears at first glance complicated. However, since we know X and S2 are independent,
the Student’s t distribution is really a ratio of two independent random variables.

Definition 2.7 (Student’s t distribution). Let X1, . . . , Xn be a random sample from a N (µ, σ2) distribution. The quantity (X −
µ)/(S/

√
n) has a Student’s t distribution with n − 1 degrees of freedom. Equivalently, a random variable T has a Student’s t

distribution with p degrees of freedom and we write T ∼ tp, if it has pdf

fT (t) =
Γ
(
p−1
2

)
Γ
(
p
2

) · 1

(pπ)1/2
· 1

(1 + t2/p)(p+1)/2
,−∞ < t < ∞

For p = 1, this becomes the pdf of the Cauchy distribution.

Remark 2.8. The Student’s t has no mgf because it does not have moments of all orders. In fact, if there are p degrees of freedom, then
there are only p− 1 moments. Hence, a t1 distribution has no mean, a t2 has no variance, etc. If Tp ∼ tp, then

E[Tp] = 0 if p > 1 and VarTp =
p

p− 2
if p > 2

Example 2.9 (variance ratio distribution)
Let X1, . . . , Xn be a random sample from a N (µX , σ2

X) population, and let Y1, . . . , Ym be a random sample from an inde-
pendent N (µY , σ

2
Y ) population. Consider the ratio σ2

X/σ2
Y . Information about this ratio is contained in S2

X/S2
Y , the ratio of

sample variances. The F distribution allows us to compare these quantities by giving us a distribution of

S2
X/S2

Y

σ2
X/σ2

Y

=
S2
X/σ2

X

S2
Y /σ

2
Y

Definition 2.10 (F distribution). Under the same setup as the previous example, the random variable

F := (S2
X/σ2

X)/(S2
Y /σ

2
Y )

has Snedecor’s F distribution with n− 1 and m− 1 degrees of freedom. Equivalently, the random variable F has the F distribution
with p and q degrees of freedom if it has pdf

fF (x) =
Γ
(
p+q
2

)
Γ
(
p
2

)
Γ
(
q
2

) (p

q

)p/2

· x(p/2)−1

(1 + (p/q)x)(p+q)/2
, 0 < x < ∞
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Theorem 2.11
We have

1. If X ∼ Fp,q, then 1/X ∼ Fq,p; that is, the reciprocal of an F random variable is again an F random variable.

2. If X ∼ tq, then X2 ∼ F1,q.

3. If X ∼ Fp,q, then (p/q)X/(1 + (p/q)X) ∼ beta(p/2, q/2).

2.2 Order Statistics

Definition 2.12 (order statistics). The order statistics of a random sample X1, . . . , Xn are the sample values placed in ascending
order, i.e. X(1) = mini Xi, X(2) is the second smallest Xi, and so on.

Theorem 2.13
Let X(1), . . . , X(n) denote the order statistics of a random sample, X1, . . . , Xn, from a contnuous population with cdf FX(x)
and pdf fX(x). Then the pdf of X(j) is

fX(j)
(x) =

n!

(j − 1)!(n− j)!
fX(x)FX(x)j−1(1− FX(x))n−j

Example 2.14 (uniform order statistics pdf)
Let X1, . . . , Xn be iid uniform(0, 1). Using the previous result, we have that the pdf of the j-th order statistic is

fX(j)
(x) =

n!

(j − 1)!(n− j)!
xj−1(1− x)n−j =

Γ(n+ 1)

Γ(j)Γ(n− j + 1)
xj−1(1− x)(n−j+1)−1 for x ∈ (0, 1)

Thus, the j-th order statistic from a uniform(0, 1) sample has a beta(j, n− j + 1) distribution. Thus,

E[X(j)] =
j

n+ 1
and Var(X(j)) =

j(n− j + 1)

(n+ 1)2(n+ 2)

Theorem 2.15
Let X(1), . . . , X(n) denote the order statistics of a random sample, X1, . . . , Xn, from a continuous population with cdf FX(x)
and pdf fX(x). Then the joint pdf of X(i) and X(j), 1 ≤ i < j ≤ n, is

fX(i),X(j)
(u, v) =

n!

(i− 1)!(j − 1− i)!(n− j)!
fX(u)fX(v)FX(u)i−1(FX(v)− FX(u))j−1−i(1− FX(v))n−j

for −∞ < u < v < ∞. The joint pdf of all the order statistics is given by

fX(1),...,X(n)
(x1, . . . , xn) =

{
n!fX(x1) · · · fX(xn) −∞ < x1 < · · · < xn < ∞
0 otherwise
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3 Problems

3.1 Previous Core Competency Problems

Problem 1. [2018 Summer Practice, # 10] Suppose that X1, . . . , Xn
i.i.d.∼ N(0, 1), and A is an n× n matrix which is symmetric (i.e.,

AT = A) and idempotent (i.e., A2 = A). Find the distribution of
∑n

i,j=1 XiXjA(i, j). Assume if necessary that
∑n

i=1 A(i, i) = s.
Problem 2 (2018 Summer Practice, # 17). Let X and Y be i.i.d. N (0, 1) random variables. Consider

Z := sign(Y ) ·X

where sign(y) := 1 if y > 0 and sign(y) := −1 if y ≤ 0.

(a) Find the distribution of Z.
(b) Compute the covariance of X and Z.
(c) Determine P [X + Z = 0].
(d) Are X and Z independent? (Give a precise mathematical argument).

Problem 3 (2018 September, # 8). Suppose (X,Y) have a multivariate normal distribution with mean vector 0 and covariance
matrix

Σ =

[
A B
BT C

]
,

where A is m×m, B is m× n, and C is n× n, and A and C are non-singular. Define a vector Z := Y −BTA−1X.

(i) Find the m× n covariance matrix of X and Z.
(ii) Express Y as Z +BTA−1X, and, hence deduce the conditional distribution of Y given X = x.

Problem 4. [2018 September, # 9] Let X ∈ Rd be a centered normal random vector and A ∈ Rd×d a fixed symmetric matrix.
Denote by Y an independent copy of X. Show that

XTAX − Y TAY
d
= 2XTAY.

Hint: (X ± Y )/
√
2 are i.i.d. random vectors following the same distribution as X.

Problem 5 (2020 September, # 7). Suppose X1, X2 are i.i.d. N(0, 1).

(a) Find the joint distribution of X1 +X2 and X1 −X2.
(b) Show that 2X1X2 has the same distribution as X2

1 −X2
2 .

3.2 Additional Practice

Problem 6 (Casella & Berger, Exercise 4.20). Suppose X1, X2 are independent N (0, σ2) random variables.

1. Find the joint distribution of Y1 and Y2, where

Y1 = X2
1 +X2

2 and Y2 =
X1√
Y1

.

2. Show that Y1 and Y2 are independent, and interpret this result geometrically.
Problem 7 (marginal normality does not imply bivariate normality). [Casella & Berger, Exercise 4.47] Let X and Y be independent
N (0, 1) random variables, and define a new random variable Z by

Z =

{
X XY > 0

−X XY < 0
.

1. Show that Z has a normal distribution.
2. Show that the joint distribution of Z and Y is not bivariate normal. Hint: show that Z and Y always have the same sign.

Problem 8 (Casella & Berger, Exercise 5.22). Let X and Y be iid N (0, 1) random variables, and define Z = min(X,Y ). Prove that
Z2 ∼ χ2

1.
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