
Review Session 5 – Stochastic Convergence

References/suggested reading

(i) Casella & Berger, section 5.5.

1 Introduction

In the previous review session, we introduced the notion of a random sample of size n, and the beginnings of estimation where
we try to deduce probable information about the underlying distribution based upon a sample. Intuitively, as n becomes larger,
we should obtain more information about the distribution. We’d like to understand the extent to which this is true and so
we will need to develop a notion of convergence for random variables. Many of the rules you learned about for the classical
convergence/limit of real sequences will hold here.

The limiting behavior of an estimator or procedure is a good approximation for the behavior when the sample size n is large, and
can often even inform us of the general finite-sample case (or at least, the two are often conflated in practice). Thus, asymptotic
analysis is a central part of statistical theory.

2 Convergence in Probability

We start with a notion of convergence based on the intuition that if Xn “converges” to X, then the mass of large deviations
“|Xn −X| > ϵ” should become smaller as n goes to 0.

Definition 2.1 (convergence in probability). A sequence of random variables X1, X2, . . . converges in probability to a random
variable X if, for every ϵ > 0,

lim
n→∞

P(|Xn −X| ≥ ϵ) = 0,

or equivalently limn P(|Xn −X| < ϵ) = 1. We will abbreviate this as Xn
P−→ X.

Theorem 2.2 (weak law of large numbers)

Let X1, X2, . . . be i.i.d. random variables with E[Xi] = µ and Var(Xi) = σ2 < ∞. Define Xn := (1/n)
∑n

i=1 Xi. Then, Xn
P−→ µ.

Proof. We have for every ϵ > 0, by Markov’s ienquality:

P(|Xn − µ| ≥ ϵ) = P((Xn − µ)2 ≥ ϵ2) ≤ Var(Xn)

ϵ2
=

σ2

n · ϵ2
n→∞−→ 0.

■
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Example 2.3 (consistency of S2)
Suppose we have a sequence X1, X2, . . . of iid random variables with E(Xi) = µ and Var(Xi) = σ2 < ∞. If we define

S2
n :=

1

n− 1

n∑
i=1

(Xi −Xn)
2

can we prove a WLLN for S2
n? Using Chebyshev’s Inequality, we have

P(|S2
n − σ2| ≥ ϵ) ≤ E(S2

n − σ2)2

ϵ2
=

VarS2
n

ϵ2

and thus, a sufficient condition that S2
n converges in probability to σ2 is that VarS2

n → 0 as n → ∞.

Theorem 2.4 (continuous mapping theorem)

Suppose that Xn
P−→ X and that h is a continuous function. Then, h(Xn)

P−→ h(X).

Example 2.5 (consistency of S =
√
S2)

By the continuous mapping theorem, we have the sample standard deviation Sn =
√
S2
n = h(S2

n) is a consistent estimator
of σ if Var(S2

n) → 0.

3 Almost Sure Convergence

Almost sure convergence (also called “almost everywhere convergence”, or “convergence with probability 1”, or “strong conver-
gence”) is another notion of convergence that is stronger than the previously mentioned convergence in probability. This type
of convergence is similar to pointwise convergence of a sequence of functions. Recall that we defined a random variable X as
really a function X : S → R from a sample space S. Then, we can think about convergence at each element of the sample space:
∀s ∈ S : Xn(s) → X(s). There is one caveat here, contained in the word “almost”. We don’t care about the value of random
variables on sets which occur with probability 0. Thus, we should only be concerned with convergence on sets with probability 1.

Definition 3.1 (almost sure convergence). A sequence of random variables X1, X2, . . . converges almost surely, or Xn
a.s.−−→ X if,

for every ϵ > 0:
P
(
lim
n

|Xn −X| < ϵ
)
= 1.

This is equivalent to P (s ∈ S : limn Xn(s) = X(s)) = 1.

Example 3.2 (almost sure but not sure convergence)
Let the sample space S be the closed interval [0, 1] with the uniform probability distribution. Define random variables
Xn(s) = s+ sn and X(s) = s. For every s ∈ [0, 1), sn → 0 as n → ∞ and Xn(s) → s = X(s). However, Xn(1) = 2 for every n so
Xn(1) does not converge to 1 = X(1). But since the convergence occurs on the set [0, 1) and P([0, 1)) = 1, Xn converges
almost surely to X.

Remark 3.3. Almost sure convergence implies convergence in probability.
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Example 3.4 (convergence in probability, but not almost surely)
Again, let the sample space S be the closed interval [0, 1] with the uniform probability distribution. Now, define the sequence
of real numbers {an} by an := n−2k

2k
where k ∈ N ∪ {0} is the largest integer such that 2k ≤ n. Then, define the sequence of

random variables X1, X2, . . . as Xn(s) := 111{s ∈ [an, an+1)}. Then, the sequence {Xn} graphically looks like a “travelling block
which gets thinner and thinner”. Xn

P−→ 0 since the set of s’s for which Xn(s) ≥ ϵ gets thinner and thinner as n → ∞. On
the other hand, there is no value of s ∈ S for which Xn(s) → 0 since for any ϵ ∈ (0, 1), there is an arbitrarily large n ∈ N for
which Xn(s) > ϵ (i.e., the blocks stay the same height).

Theorem 3.5 (continuous mapping theorem)

Suppose that Xn
a.s.−−→ X and that h is a continuous function. Then, h(Xn)

a.s.−−→ h(X).

Proof. This follows from the definition of a continuous function. ■

Theorem 3.6 (strong law of large numbers)

Let X1, X2, . . . be i.i.d. random variables with E[Xi] = µ < ∞, and define Xn := 1
n

∑n
i=1 Xi. Then, Xn

a.s.−−→ µ.

Proof. We give an idea of the proof under the stronger assumption that Xi has finite fourth moment: E[X4
i ] < ∞. WLOG,

suppose µ = 0 since we can just subtract µ from each Xi and appeal to the continuous mapping theorem. Let Sn :=
∑n

i=1 Xi.
Then, expanding the fourth power of a sum gives us:

E[S4
n] = n · E[X4

1 ] + 3(n2 − n) · (E[X2
1 ])

2,

where we used the fact that µ = 0. In other words E[S4
n] ≤ Cn2 for some C > 0. Thus, by Chebyshev’s inequality

P(|Sn| > nϵ) = P(|S4
n| ≥ n4ϵ4) ≤ E[|S4

n|]
n4ϵ4

≤ C

n2ϵ4
.

In other words, we’ve shown that the probability that the average deviates from 0 by more than ϵ, or |Sn/n| > ϵ, is small and
scales like n−2. Then, we have

∞∑
n=1

P(|Sn/n| > ϵ) < ∞.

The proof is finished using a lemma called the Borel-Cantelli lemma which states that if the above holds, then

P (∀n ∈ N : ∃k ≥ n : |Sk/k| > ϵ) = 0.

The event above should be read as: for every positive integer n ∈ N, there is a k ≥ n for which the deviation is large |Sk/k| > ϵ.
This is exactly the negation of Sk/k → 0. Thus, P

(
limn |Xn| > ϵ

)
= 0 and Xn

a.s.−−→ 0. ■

Remark 3.7. WLLN in fact holds without the finite fourth moment assumption (even though our short proof used this assumption).

4 Convergence in Distribution

We have already encountered the idea of convergence in distribution in review session 2, where we defined convergence of a
sequence of random variables by the pointwise convergence of their cdf’s. This is also sometimes called weak convergence since
it is implied by the other two modes of convergence.
Definition 4.1 (convergence in distribution). A sequence of random variables X1, X2, . . . converges in distribution to a random
variable X if the cdf’s converge, or

lim
n→∞

FXn(x) = FX(x),

at all points x where FX(x) is continuous. We denote this by Xn
d−→ X.
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Example 4.2
Why might we only care about the points of continuity here? It turns out this is essential. Let’s consider an example where
Xn is uniform on the interval (0, 1/n). If we look at the graph of the pdf of Xn, it seems like the mass of Xn gradually moves
towards 0. So, Xn should converge to the random variable X = 0 (by which we mean X = 0 with probability 1). However,
the cdf Fn(x) of Xn vanishes at x = 0. So, we see Fn(0)

n→∞→ 0, but FX(0), the cdf of X evaluated at 0, is 1 ̸= 0. Thus, the
convergence of cdf’s fails at the point x = 0 where FX(·) is discontinuous. However, we still have Xn

d−→ X.

Example 4.3 (maximum of uniforms)
If X1, X2, . . . are iid uniform(0, 1), we have

P(|X(n) − 1| ≥ ϵ) = P(X(n) ≥ 1 + ϵ) + P(X(n) ≤ 1− ϵ) = P(X(n) ≤ 1− ϵ)

which is
P(X(n) ≤ 1− ϵ) = P(Xi ≤ 1− ϵ, i = 1, . . . , n) = (1− ϵ)n

which goes to 0 meaning X(n) → 1 in probability. However, if we take ϵ = t/n, we have

P(X(n) ≤ 1− t/n) = (1− t/n)n → e−t

giving
P(n(1−X(n)) ≤ t) → 1− e−t

Thus, the random variable n(1−X(n)) converges in distribution to an exp(1) random variable.

Theorem 4.4 (relation to other forms of convergence)

Xn
P−→ X =⇒ Xn

d−→ X.

Theorem 4.5
The sequence of random variables {Xn} converges in probability to a constant c iff the sequence also converges in
distribution to c. In order words: Xn

d−→ c ⇐⇒ Xn
P−→ c.

Recall from review session 2 that convergence in distribution is characterized by convergence of the mgf’s, if they exist.

Theorem 4.6 (Lévy continuity theorem for mgf’s)
Suppose {Xi}∞i=1 is a sequence of random variables, each with mgfMXi(t). Furthermore, suppose that limi→∞ MXi(t) = M(t)
for all t in a neighborhood of 0 and M(t) is an mgf. Then there is a unique cdf FX whose moments are determined by MX(t)
and, for all x where FX(x) is continuous, we have

lim
i→∞

FXi
(x) = FX(x)

That is, convergence for |t| < h, of mgfs to an mgf implies convergence in distribution.

Theorem 4.7 (central limit theorem)
Let X1, X2, . . . be a sequence of i.i.d. random variables. Let E[Xi] = µ and Var(Xi) := σ2 < ∞. Then,

√
n(Xn − µ)

σ

d−→ N (0, 1).
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Proof. We’ll give an outline of the proof assuming Xi has an mgf. Of course, the mgf may not exist in general – but it can be
replaced in this argument with the more general characteristic function, which always exists.

Let’s start by assuming WLOG that Xi has mean 0 and variance 1. This is fine since Xn−µ
σ = 1

n

∑n
i=1

Xi−µ
σ , and thus we can

standardize each Xi. Thus, it suffices to show √
n ·Xn

d−→ N (0, 1). We’ll use Lévy’s continuity theorem to achieve this. We have
the mgf of √n ·Xn is

M√
n·Xn

(t) = M∑n
i=1 Xi

(
t√
n

)
=

(
MX

(
t√
n

))n

.

We now expand MX(t/
√
n) in a Taylor series around 0:

MX

(
t√
n

)
= 1 +

(t/
√
n)2

2!
+ o(t2/n).

Thus, we have (
MX

(
t√
n

))n

=

(
1 +

1

n

(
t2

2
+ n · o(t2/n)

))n
n→∞−→ lim

n

(
1 +

1

n

(
t2

2

))n

= et
2/2.

In the above, we used the fact that the second-order Taylor expansion remainder, denoted by o(t2/n), goes to 0 faster than
(1/

√
n)2 = 1/n. Thus, n · o(t2/n) → 0. ■

Theorem 4.8 (portmanteau theorem)

Xn
d−→ X iff E[f(Xn)]

n→∞−→ E[f(X)] for every f a bounded and continuous function.

Proof. We’ll give a sketch of the proof. The reverse direction would follow from letting f(x) := 111{x ≤ t} whence E[111{X ≤ t}] =
FX(t), the cdf of X. Thus, the statement E[f(Xn)]

n→∞−→ E[f(X)] gives us pointwise convergence of cdf’s. There’s only one problem
with this argument! f(x) is bounded, but not continuous. Thus, we have to take a continuous approximation f̃(x) of f(x)
(imagine “smoothing out” an indicator function to make it continuous), and argue that E[f̃(X)] → E[f(X)] as the approximation
f̃ converges to f .

The forward direction is a similar argument, but in reverse. If Xn
d−→ X, then we know the desired convergence holds for

functions f of the form f(x) = 111{x ≤ t}. By linearity of expectation and convergence, we can further show it holds for step
functions or functions f of the form f(x) =

∑n
i=1 ai ·111{x ∈ (bi, ci)}. Then, it remains to show these step functions can approximate

a general bounded and continuous function, in the sense that their integrals converge.

The details here are omitted, but this is a very standard type of approximation argument in probability theory, where if we want
to prove something for a broad class of functions, we first focus on a simpler subclass of functions (i.e., indicator functions over
intervals) where it is easier to prove and then move to the general case by taking another limit. ■

Theorem 4.9 (continuous mapping theorem)

If Xn
d−→ X, then h(Xn)

d−→ h(X) when h is a continuous function.

Proof. This follows from portmanteau theorem. We have that if Xn
d−→ X, then E[f(Xn)] → E[f(X)] for every bounded and

continuous f . In particular, for any bounded and continuous function f , f ◦ h is also a bounded and continuous function. Thus,
E[f(h(Xn))] → E[f(h(X))] meaning h(Xn)

d−→ h(X) by portmantau theorem. ■
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Theorem 4.10 (Slutsky’s theorem)

If Xn
d−→ X and Yn

P−→ c, a constant, (recall this is equivalent to saying Yn
d−→ c) then

1. YnXn
d−→ c ·X.

2. Xn + Yn
d−→ X + c.

Proof. This follows from the continuous mapping theorem. ■

Example 4.11 (normal approximation with estimated variance)
Suppose √

n(Xn − µ)

σ

d−→ N (0, 1)

but that the value of σ is unknown. We have seen in a previous example that if limn→∞ VarS2
n = 0, then S2

n → σ2 in
probability. We can show this implies σ/Sn → 1 in probability. Hence, by Slutsky,

√
n(Xn − µ)

Sn
=

σ

Sn
·
√
n(Xn − µ)

σ

d−→ N (0, 1)

5 Generalizations of CLT

Lyapunov’s CLT is a more general version of the central limit theorem which holds for a sequence of random variables Xi which
are independent, but not necessarily identically distributed. The cost of allowing for more general sequences of random
variables {Xn}, however, is that we need some control on the average size of the deviations Xn − E[Xn] which can now vary
greatly as n changes. One way of doing this is by establishing a bound on the higher moments of the deviation |Xn − E[Xn]|2+δ.

Theorem 5.1 (Lyapunov CLT)
Suppose X1, X2, . . . is a sequence of independent random variables, each with finite expected value µi and variance σ2

i .
Define

s2n :=

n∑
i=1

σ2
i .

If for some δ > 0, Lyapunov’s condition

lim
n→∞

1

s2+δ
n

n∑
i=1

E[|Xi − µi|2+δ] = 0,

is satisfied, then
1

sn

n∑
i=1

(Xi − µi)
d−→ N (0, 1).
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Remark 5.2. In practice, it is often easiest to check Lyapunov’s condition for δ = 1 (or to compute the third moments of Xi).

Lyapunov’s CLT can also be stated for triangular arrays. A triangular array is an array of random variables of the form

X1,1

X2,1 X2,2

X3,1 X3,2 X3,3

...
...

... . . .
Xn,1 Xn,2 Xn,3 · · · Xn,n

· · · · · · · · · · · · · · ·

,

where each row {Xn,1, . . . , Xn,n} is an i.i.d. collection of random variables. The key generality here is that the distirbution is
allowed to change from row to row. This is a situation which can arise, for example, when looking at a sequence of random
matrices Xn ∈ Rn×n which grows in dimension with n.

Theorem 5.3 (Lyapunov CLT for triangular arrays)
Suppose {Xn,k}n,k is a triangular array where for each n, Xn,1, Xn,2, . . . are independent with E[Xn,k] = 0 for k = 1, 2, . . . , n.
If s2n :=

∑n
k=1 σ

2
n,k, where Var(Xn,k) = σ2

n,k, and for some δ > 0:

lim
n→∞

n∑
k=1

1

s2+δ
n

E[|Xn,k|2+δ] = 0,

then
1

sn

n∑
k=1

Xn,k
d−→ N (0, 1).

Theorem 5.4 (multivariate CLT)
Let {Xn} be a sequence i.i.d. random vectors in Rp with mean µ and covariance Σ. Then,

√
n

(
1

n

n∑
i=1

Xi − µ

)
d−→ N (000p,Σ).

Idea. By the univariate CLT, for any a ∈ Rp, we have

aT

(
√
n

(
1

n

n∑
i=1

Xi − µ

))
=

√
n

(
1

n

n∑
i=1

aT Xi − aTµ

)
d−→ N (0,aTΣa).

Thus, we see that any projection of the limiting distribution of √n
(
1
n

∑n
i=1 Xi − µ

)
is Gaussian. This means, by the Cramér-Wold

device (see review session 4), the limiting distribution must also be Gaussian. ■
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6 Problems

6.1 Previous Core Competency Problems

Problem 1 (2018 Summer Practice, # 11). Suppose that X1, . . . , Xn
i.i.d.∼ Ber(λ/n).

(a) What is the distribution of
∑n

i=1 Xi.

(b) Compute limn→∞ P(
∑n

i=1 Xi = k), where k is any fixed nonnegative integer, and hence show that
∑n

i=1 Xi converges in
distribution to a random variable Y .

(c) Compute E[Y (Y − 1)], where Y is as in part (b).

Problem 2 (2018 Summer Practice, # 16). Farmers in the Hudson Valley pack apples into bags of approximately 10 pounds, but
due to the variation in apples the actual weight varies. We may model the weight of a bag as uniformly distributed in [9.5, 10.5]
and independent of other bags. The farmers load 1200 bags onto a truck with maximal admissible load of 13000 pounds. Find a
simple approximation to the probability that the truck is overloaded, expressed in terms of the Normal distribution.

Problem 3 (2018 Summer Practice, # 19). suppose for every n ≥ 1, An is a real symmetric matrix of size n×n, whose eigenvalues
(λ1, . . . , λn) satisfies the following properties:

(i) maxni=1 |λi|
n→∞→ 0.

(ii)
∑n

i=1 λ
2
i = 1.

Find the asymptotic distribution of
∑n

i,j=1 An(i, j)XiXj , where {Xi}i≥1 is a sequence of i.i.d. N(0, 1).

Problem 4 (2018 September, # 3). Suppose that, for n ≥ 1, Xn is a random variable taking values in {1/n, 2/n, . . . , n/n} with
equal probability 1/n.

(i) Show that Xn converges in distribution, as n → ∞? What is its weak limit?

(ii) Let f : [0, 1] → R be defined as f(x) = x sin(x), for x ∈ [0, 1]. Using the above or otherwise, show that

lim
n→∞

1

n

n∑
k=1

f

(
k

n

)
=

∫ 1

0

f(x) dx.

Problem 5 (2018 September, # 7). Suppose X1, . . . , Xn are i.i.d. with P(Xi = ±1) = 1
2 . Define

Yi :=

i∏
j=1

Xj , for i = 1, . . . , n.

(i) Find the joint distribution of (Y1, Y2).

(ii) Derive the limiting distribution of 1√
n

∑n
i=1 Yi.

Problem 6 (2019, May # 2). Let Z1, . . . , Zn be i.i.d. random variables with density f . Suppose that (i) P(Zi > 0) = 1, and (ii) f is
continuous on [0, ϵ), for some ϵ > 0. Let λ := f(0). Let

Xn = nmin{Z1, . . . , Zn}.

Show that Xn converges in distribution, and find the limiting distribution.

Problem 7 (2019 May, # 8). Suppose you have a quadratic form XT
nAnXn, where Xn ∼ Nn (0n×1, In×n), and An is a symmetric

n× n matrix with 0 on the diagonal. Let (λ1,n, λ2,n, . . . , λn,n) denote the eigenvalues of An, and let ∥λ∥2,n :=
√∑n

i=1 λ
2
i,n denote

the ℓ2-norm of the eigenvalues.
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(a) If lim
n→∞

max
i=1,...,n

|λi,n|

∥λ∥2,n
= 0, show that Tn := 1

∥λ∥2,n
XT
nAnXn

d−→ N(0, 1) as n → ∞.
[Hint: You may use Lyapunov’s1 CLT. Note that the trace of a square matrix is the sum of its eigenvalues. ]

(b) If
lim
n→∞

λ1,n

∥λ∥2,n
= 1,

show that Tn
d−→ χ2

1 − 1.

Problem 8 (2019 May, # 9). Let Yn =
∏n

i=1 Xi where X1, . . . , Xn are i.i.d. nonnegative non-degenerate random variables with
mean E(Xi) = 1. Prove that Yn

P−→ 0 as n → ∞ when: (i) P(X1 = 0) > 0, and (ii) P(X1 = 0) = 0.

Problem 9 (2019 May, # 10). Let fX,Y (x, y) be a bivariate density and let (X1, Y1), . . . , (XN , YN ) be i.i.d. fX,Y . Let w(·) be an
arbitrary probability density function. Let

f̂X(x) =
1

N

N∑
i=1

fX,Y (x, Yi)w(Xi)

fX,Y (Xi, Yi)
.

Show that, for any x ∈ R, f̂X(x)
P−→ fX(x), where fX is the marginal density of X1.

Problem 10 (2019 September, # 6). Suppose that X1, X2, . . . are i.i.d. having an exponential distribution with mean 1. Show that

max1≤k≤n Xk

log n

P−→ 1 as n → ∞

where P−→ denotes convergence in probability.

Problem 11 (2020 May, # 2). Let X1, X2, . . . , Xn denote n independent and identically distributed observations from Uniform(0, 1).
We order these observations according to their distance from x = 0.75 and call the ordered ones Xx

(1), X
x
(2), . . . , X

x
(n). Note that

Xx
(1) and Xx

(n) are, respectively, the closest and farthest observations from x = 0.75.

(i) Prove that Xx
(1) converges to 0.75 in probability.

(ii) What does Xx
(n) converge to in probability? Prove your answer.

Problem 12 (2020 September, # 2). Suppose that X1, . . . , X2n are i.i.d. U [0, 1]. Let Yi = X2i−1 +X2i for 1 ≤ i ≤ n.

(a) Find the limiting distribution of Y1.

(b) Find the limiting distribution of √n(2− Y(n)) as n → ∞.

Problem 13 (2021 September, # 5). Suppose {ξi}i≥0 are i.i.d. N (0, 1) random variables. Find the constant c such that

max1≤i≤n Xi√
log(n)

P−→ c,

for each of the following three cases where {Xi}i≥1 is defined.

(i) Xi = ξi for i ≥ 1.

(ii) Xi = ξi + ξ0 for i ≥ 1.

(iii) Xi =
ξi+ξi−1√

2
for i ≥ 1.

Problem 14 (2021 September, # 7). Let X1, X2, . . . , Xn
i.i.d.∼ F (F denotes the CDF). Our goal is to estimate γ = F (0) + 2F (1). We

employ the following estimate

γ̂ =
1

n

(
n∑

i=1

111{Xi ≤ 0}+ 2

n∑
i=1

111{Xi ≤ 1}

)
,

where 111{·} dneotes the indicator function.
1Lyapunov’s CLT: Suppose that {Z1, Z2, . . .} is a sequence of independent random variables such that Zi has finite expected value µi and variance σ2

i .
Define s2n :=

∑n
i=1 σ

2
i . If limn→∞

1
s3n

∑n
i=1 E[|Zi − µi|3] = 0 is satisfied, then 1

sn

∑n
i=1(Zi − µi)

d−→ N(0, 1).
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(i) Calculate E[γ̂].

(ii) What is the limiting distribution of √n(γ̂ − γ)? Justify your answer.

Problem 15 (2021 September, # 8). Answer the following questions.

(i) Suppose that (Xn, Yn)
d−→ N (0,Σ) in distribution with Σ = [2, 1; 1, 1]. What does (Xn − Yn)

2 converge in distribution? Prove
your answer.

(ii) Suppose that (Xn,
√
nYn)

d−→ N (0,Σ) in distribution with Σ = [2, 1; 1, 1]. What does (Xn − Yn)
2 converge to in distribution?

Prove your answer.

(iii) LetXn
P−→ 1. For eachXn, we pick Yn uniformly at random from the internet [0, Xn]. What does Yn converge to in distribution?

Prove your answer.
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