
Review Session 6 – Point Estimation

References/suggested reading

(i) Casella & Berger: section 6.2, chapter 7.

1 Introduction

In point estimation, we consider a sample X1, . . . , Xn
i.i.d.∼ f(x|θ) from a population/distribution with pmf/pdf f(x|θ). We

seek a method of finding a good estimator of the unknown parameter θ. Previously, we’ve seen two examples where θ is
the the mean EX∼f(x|θ)[X] or variance VarX∼f(x|θ)(X) of the population. By estimator, we simply mean a statistic, or some
function W (X1, . . . , Xn) of the sample. For example, we might take W (X1, . . . , Xn) = Xn := 1

n

∑n
i=1Xi, the sample mean, or

W (X1, . . . , Xn) = S2 := 1
n−1

∑n
i=1(Xi −Xn)

2, the sample variance, as seen in previous review sessions.

We’ve seen in the previous review session how simple estimators, such asXn and S2, behave in the large-sample setting through
the law of large numbers. Now, we want to understand how these estimators fare for a fixed sample size n. More generally,
outside of these simple cases, we want (1) way(s) of obtaining a reasonable estimator for a general parameter θ and (2) some
means of comparing the performance of different estimators in estimating a given parameter θ. If the performance of an
estimator can be properly quantified, then we can develop a notion of a “best estimator”.
Note that, in the most general case, θ might be a vector here of univariate parameters, or some function of another parameter
of interest.

2 Method of Moments

The method of moments gives a fairly straightforward way of obtaining an estimator by conflating the population and sample
moments. It works best when the parameter θ is something easily related to the moments of the distribution of f(x|θ) (e.g.,
when θ is the mean or variance).

Definition 2.1 (method of moments). Let X1, . . . , Xn be a sample from a population with pdf or pmf f(x|θ1, . . . , θk). Method
of moments estimators are found by equating the first k sample moments to the corresponding k population moments, and
solving the resultant system of equations. Define:

mk :=
1

n

n∑
i=1

Xk
i , µk := E[Xk]

The population moment µ′
j is a function of θ1, . . . , θk. The method of moments estimator (θ̃1, . . . , θ̃k) of (θ1, . . . , θk) is obtained by

solving the system

m1 = µ1(θ1, . . . , θk)

m2 = µ2(θ1, . . . , θk)

...
mk = µk(θ1, . . . , θk)
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Example 2.2 (normal method of moments)
Suppose X1, . . . , Xn are iid N (θ, σ2). Our parameters here are (θ, σ2). We then have µ1 = θ and µ2 = θ2 + σ2 so that solving
the system Xn = θ and 1

n

∑
X2

i = θ2 + σ2, we get

θ̃ = X, σ̃2 =
1

n

∑
i

(Xi −X)2.

Example 2.3 (binomial method of moments)
LetX1, . . . , Xn be iid binomial(k, p). Our parameters here are (k, p). Equating the sample moments to those of the population
gives

Xn = kp and 1

n

∑
i

X2
i = kp(1− p) + k2p2 =⇒ k̃ =

X
2

X − (1/n)
∑

i(Xi −X)2
and p̃ = X

k̃

Admittedly, the method of moments estimators are not often the best estimators for the population parameters. In the above
example, we see that it is even possible for k̃ and p̃ to be negative, which goes against the ranges of the parameters k and p.
Method of moment estimators are consistent under very weak assumptions since the sample moments mk converge to the
population moments µk by LLN. However, they tend to be biased. In Example 2.2, we see that E[σ̃2] =

(
n−1
n

)
· σ2 ̸= σ2.

3 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is another standard technique for finding estimators. Recall that if X1, . . . , Xn are an i.i.d.
sample from a population with pdf or pmf f(x|θ), the likelihood function is defined by

L(θ|X1, . . . , Xn) :=

n∏
i=1

f(Xi|θ).

Definition 3.1 (MLE). For each sample point x = (x1, . . . , xn), which we consider as realized values of the random sample
X1, . . . , Xn, the maximum likelihood estimator of the parameter θ based on the sample x is the value of θ which maximizes L(θ|x).

Remark 3.2. It is often easier to work with the log-likelihood log(L(θ|x)) (which turns the product over i ∈ [n] into a sum). Since log(·) is a
monotone transformation, the MLE is always the maximizer of log(L(θ|x)).

Note that, unlike the method of moments estimator, the range of the MLE coincides with the range of the parameter by
construction (i.e., the maximization of L(θ|x) should be treated as a constrained maximization over the known range of θ).
Intuitively, the MLE is a reasonable choice of estimator since it is the parameter which is most likely to have produced the
observed sample. We’ll see later that the MLE will also benefit from some other optimality properties. The main drawback of the
MLE is the potential difficulty in maximizing L(θ|x). If the likelihood function is twice differentiable in θ, the go-to approach is to
use calculus (i.e., the second derivative test or its variants). When θ is a vector, one has to be careful in optimizing L(θ|x) over all
the dimensions of θ. In the case of two variables, θ = (θ1, θ2), the “second derivative test” for bivariate maximization gives us a
way of finding optima in both θ1 and θ2.
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Lemma 3.3
To verify a function H(θ1, θ2) has a local maximum at (θ̂1, θ̂2), it must be shown that

1. The first-order partials ∂
∂θ1

H|θ1=θ̂1,θ2=θ̂2
= 0 and ∂

∂θ2
H|θ1=θ̂1,θ2=θ̂2

= 0.

2. At least one second order partial is negative: ∂2

∂θ2
1
H|θ1=θ̂1,θ2=θ̂2

< 0 or ∂2

∂θ2
2
H|θ1=θ̂1,θ2=θ̂2

< 0.

3. The Jacobian of second-order partials is positive.

∂2

∂θ21
H(θ1, θ2)

∂2

∂θ22
H(θ1, θ2)−

(
∂2

∂θ1∂θ2
H(θ1, θ2)

)2
∣∣∣∣∣
θ1=θ̂1,θ2=θ̂2

> 0

However, it will often be the case that we do not need to check the last condition above. This may occur, for instance, if we can
show that for any fixed θ1, the likelihood can be maximized in θ2 with a maximizer θ̂2 not depending on θ1. Then, it remains to
maximize L(θ1, θ̂2|x) over θ1. Let’s see an example of this.

Example 3.4 (normal MLE, mean and variance unknown)
Let X1, . . . , Xn be iid N (θ, σ2), with both θ, σ2 unknown. Then

L(θ, σ2|x) = 1

(2πσ2)n/2
e−(1/2)

∑n
i=1(xi−θ)2/σ2

and
logL(θ, σ2|x) = −n

2
log(2π)− n

2
log σ2 − 1

2

n∑
i=1

(xi − θ)2/σ2

The partials are then

∂

∂θ
logL(θ, σ2|x) = 1

σ2

n∑
i=1

(xi − θ)

∂

∂σ2
logL(θ, σ2|x) = − n

2σ2
+

1

2σ4

n∑
i=1

(xi − θ)2

Setting both partials equal to 0 gives solution (θ̂, σ̂2) = (xn, n
−1

∑
(xi − xn)

2). We show this is in fact a global maximum.
Recall that if θ ̸= xn, then ∑

i

(xi − θ)2 >
∑
i

(xi − xn)
2

Hence, for any σ2,
1

(2πσ2)n/2
e−(1/2)

∑
i(xi−xn)

2/σ2

≥ 1

(2πσ2)n/2
e−(1/2)

∑
i(xi−θ)2/σ2

It suffices to show (σ2)−n/2 exp(−(1/2)
∑

(xi − xn)
2/σ2) achieves its global maximum at σ̂2. This is straightforward with

univariate calculus.

Another consideration that often arises in tricky MLE calculations is to be careful about constraining the maximization to the
range of θ. Let’s see an example of this.
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Example 3.5 (restricted range MLE)
Let X1, . . . , Xn be i.i.d. N (θ, 1) where is it known that θ ≥ 0. With no restrictions on θ, we saw that the MLE of θ is Xn;
however, if Xn is negative, it will be outside the range of the parameter which means it cannot be the MLE in this setting
with θ ≥ 0. However, if Xn is negative, then the likelihood function L(θ|X1, . . . , Xn) is decreasing in θ for θ ≥ 0. Thus, it is
maximized at θ̂ = 0. If Xn > 0 on the other hand, the likelihood is maximized at θ̂ = Xn as our earlier calculations show.
Thus, in this case, the MLE is

θ̂ =

{
Xn Xn ≥ 0

0 Xn < 0.

Sometimes it is difficult to differentiate the likelihood or log-likelihood, and we have to instead make careful inferences about
where the likelihood’s maximum can be located. This occurs, for instance, when our parameter θ takes on a discrete range of
values.

Example 3.6 (binomial MLE, unknown number of trials)
Let X1, . . . , Xn be a random sample from a binomial(k, p) population, where p is known and k is unknown. The likelihood is
then

L(k|x, p) =
n∏

i=1

(
k

xi

)
pxi(1− p)k−xi

Maximizing L by differentiation is difficult since k has to be an integer. Observe L(k|x, p) = 0 if k < max(xi). Thus, our
maximizing k must satisfy k ≥ max(xi). Since the function k 7→ L(k|x, p) is increasing and then decreasing in k, we can
instead find the MLE k by mandating that it satisfies:

L(k|x, p)
L(k − 1|x, p) ≥ 1,

L(k + 1|x, p)
L(k|x, p) < 1.

These conditions become
(k(1− p))n ≥

n∏
i=1

(k − xi) and ((k + 1)(1− p))n <

n∏
i=1

(k + 1− xi)

Dividing by kn, we get:

(1− p)n ≥
n∏

i=1

(1− xi/k) and (1− p)n <

n∏
i=1

(1− xi/(k + 1)).

In fact, it will suffice to solve for
∏n

i=1(1 − xi/z) = (1 − p)n on the domain of real numbers z ∈ [max{xi},∞). Note that
f(z) :=

∏n
i=1(1− xi/z) is a continuous strictly increasing function in increasing z whose boundary values are f(max{xi}) = 0

and limz→∞ f(z) = 1. Thus, there is some value of ẑ such that f(ẑ) = (1− p)n, whence ⌈ẑ⌉ will be the MLE.

Finally, sometimes, we may be interested in the MLE of a function of another parameter η which can be written as the function
of θ, η = τ(θ). Then, it turns out the MLE of η is just τ(·) applied to the MLE of θ. Thus, MLE is invariant under transformations of
the parameter. We make this formal as follows:
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Theorem 3.7 (functional invariance of MLE)
Suppose that a distribution is indexed by a parameter θ, but the interest is in finding an esimtator for some function of θ,
say η := τ(θ). If τ(·) is one-to-one, then it is clear that if θ̂ is the MLE of θ, then τ(θ̂) should be the MLE of τ(θ). This is evident
from the fact that we can write the likelihood of η as

L∗(η|x) =
n∏

i=1

f(xi|τ−1(η)) = L(τ−1(η)|x),

so that if θ = τ−1(η) maximizes L(·|x), then η maximizes L∗(·|x). If τ(·) is not one-to-one, then we need a more general
notion of the likelihood of η since there is no longer a unique agreed-upon value of θ such that τ(θ) = η. In this case, we
consider the induced likelihood function:

L∗(η|x) = sup
θ:τ(θ)=η

L(θ|x).

The value η̂ that maximizes L∗(η|x) is what we call the MLE of η = τ(θ). Then, similar to before, we have η̂ = τ(θ̂) where θ̂ is
the MLE of θ.

4 Bayes Estimators

In the Bayesian approach, a parameter θ is thought to itself arise from a probability distribution, called the prior distribution,
which captures an experimenter’s subjective and prior belief about the value of θ. This is so-called for being determined prior
to observing the random sample X1, . . . , Xn ∼ f(x|θ). Upon observing the sample, the prior distribution on θ is updated to
the so-called posterior distribution. The update procedure is rooted in Bayes’ rule, which tells us how to relate the conditional
distribution θ|x to the distribution x|θ.
In particular, let π(θ) be a prior distribution and let f(x|θ) be the sampling distribution. Then, the posterior distribution, i.e. the
conditional distribution of θ given the sample x, is

π(θ|x) = f(x|θ)π(θ)
m(x) ,

where m(x) =
∫
f(x|θ)π(θ) dθ. Typically, it will suffice to compute only the part of the RHS which depends on θ, f(x|θ)π(θ), as this

will often identify the posterior distribution. From the posterior distribution, we can concoct point estimates of θ. For example,
we know the mean E[θ|x] is a fairly “representative” deterministic value of the distribution π(θ|x). So, we can consider the point
estimate δ(x) := E[θ|x] of θ. We can also consider similar measures of central tendency such as the median median(θ|x) of the
posterior. The maximum a posteriori (MAP) estimator is the mode of the posterior distribution argmaxθ π(θ|x).
Usually, unless stated otherwise, the Bayes estimator is understood to be the posterior mean E[θ|x].
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Example 4.1 (binomial Bayes estimation)
LetX1, . . . , Xn be iid Bernoulli(p). Then Y =

∑
iXi is binomial(n, p). Assume the prior on p is beta(α, β). The joint distribution

of Y and p is

f(y, p) =

((
n

y

)
py(1− p)n−y

)(
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1

)
=

(
n

y

)
Γ(α+ β)

Γ(α)Γ(β)
py+α−1(1− p)n−y+β−1

The marginal of Y is then (by recognizing the integral contains the kernel of a beta pdf)

f(y) =

(
n

y

)
Γ(α+ β)

Γ(α)Γ(β)
· Γ(y + α)Γ(n− y + β)

Γ(n+ α+ β)
.

The posterior is then
f(p|y) = f(y, p)

f(y)
=

Γ(n+ α+ β)

Γ(y + α)Γ(n− y + β)
py+α−1(1− p)n−y+β−1

which is beta(y + α, n− y + β). The Bayes estimator is then:

p̂B =
y + α

α+ β + n

When estimating a binomial parameter, as in the example above, it was not absolutely necessary to choose a prior distribution
from the beta family. However, there was a certain advantage to choosing the beta family in that the estimator ended up having
a nice closed-form expression. Moreover, this was made possible by the fact that the posterior was in the same family as the
prior. There is a broad class of examples for which this phenomenon holds.

Definition 4.2 (conjugate family). Let F denote the class of pdfs or pmfs f(x|θ) (indexed by θ). A class Π of prior distributions
is a conjugate family for F if the posterior distribution is in the class Π for all f ∈ F , all priors in Π, and all x ∈ X . Examples of
conjugate families can be found here.
Note: by class Π we mean a collection of distributions or pdf’s/pmf’s, typically parametrized by one or two real numbers, much
like how the class F is indexed by θ. We’ve seen many examples of such classes already, e.g. the beta family, the normal family,
the gamma family, etc.

Example 4.3 (normal Bayes estimators)
Let X ∼ N (θ, σ2) and suppose the prior on θ is N (µ, τ2). The posterior of θ then is also normal with mean and variance

E[θ|x] = τ2

τ2 + σ2
x+

σ2

σ2 + τ2
µ and Var(θ|x) = σ2τ2

σ2 + τ2

Thus, the normal family is its own conjugate family.

5 Methods of Evaluating Estimators

5.1 Mean Squared Error

We want some way of measuring the quality of an estimator. A natural approach is to first consider some loss function L(θ,W )
of the true value of the parameter θ and the estimator W =W (X1, . . . , Xn). For instance, we might take L(θ,W ) to simply be
the Euclidean distance between W and θ. Since X1, . . . , Xn are random, we want to consider the average error Eθ[L(θ,W )]. This
running standard we will use in this section is the mean squared error where the loss L(θ,W ) := |θ −W |2 (for θ ∈ R).

Definition 5.1 (mean squared error). The mean squared error (MSE) of an estimator W of a parameter θ is the function of θ
defined by Eθ[|W − θ|2].
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Remark 5.2 (bias-variance decomposition). The MSE can be rewritten as:

Eθ[W − θ]2 = Varθ W + (EθW − θ)2 =: Varθ W + (BiasθW )2

Let’s look at how some of the familiar estimators we’ve established so far fare in terms of MSE.

Example 5.3 (normal MSE)
Let X1, . . . , Xn be i.i.d. N (µ, σ2). The statistics Xn and S2 are both unbiased estimators of their population analogues µ and
σ2:

E[Xn] = µ,E[S2] = σ2

for all µ, σ2. In fact, both of the above are always true without the normality assumption. The MSE’s of these estimators are,
respectively,

E[Xn − µ]2 = VarXn =
σ2

n
and E[S2 − σ2]2 = VarS2 =

2σ4

n− 1

Example 5.4
We’ve seen before that an alternative estimator for σ2 is the MLE σ̂2 := 1

n

∑
(Xi −X)2 = n−1

n · S2. We have

E[σ̂2] =
n− 1

n
σ2

so that σ̂2 is a biased estimator of σ2. The variance of σ̂2 is then

Var(σ̂2) =
2(n− 1)σ4

n2

and, hence, its MSE is
E[σ̂2 − σ2]2 =

(
2n− 1

n2

)
σ4

Thus,
E[σ̂2 − σ2]2 =

(
2n− 1

n2

)
σ4 <

(
2

n− 1

)
σ4 = E[S2 − σ2]2

meaning σ̂2 has a smaller MSE than S2. Thus, by trading off variance for bias, the MSE is improved by using σ̂2 instead of S2.
This does not necessarily mean that σ̂2 is a better estimator than S2: it is still biased and, on average, will underestimate σ2.
Moreover, there is the question of whether the MSE is the right notion of error for scale parameters such as σ2.

5.2 Best Unbiased Estimators

It is not always obvious how to compare two estimators even based on mean squared error. Namely, the MSE Eθ[[W − θ|2] is a
function of θ and thus will vary in value for different values of θ. As a trivial example, the constant estimator W (X1, . . . , Xn) ≡ 0
would have an MSE of 0 at θ = 0, but would be a very unsuitable estimator for any other value of θ. One way to make this task
of finding a “best” estimator more tractable is to limit the class of estimators. In particular, we consider the class of unbiased
estimators W , i.e. such that Eθ[W ] = θ. From the bias-variance decomposition of the MSE, it then suffices to find an unbiased
estimator with smallest variance, as this will also have smallest MSE.

Definition 5.5 (best unbiased estimator, UMVUE). An estimator W ∗ is a best unbiased estimator of θ if it is unbiased for all θ and,
for any other unbiased estimator W , we have

Varθ(W
∗) ≤ Varθ(W )

for all θ. W ∗ is also called a uniform minimum variance unbiased estimator (UMVUE) of θ. This is also the estimator with the
smallest MSE in this class of unbiased estimators.

It is often not difficult to come up with examples of unbiased estimators. For starters, if we can even come upon two unbiased
estimators W1,W2, then any linear combination c ·W1 + (1 − c) ·W2 for c ∈ [0, 1] will also be an unbiased estimator. But, it
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might be difficult to determine which unbiased estimator W ∗ truly minimizes the variance Varθ(W
∗). However, it turns out the

minimum variance has an exact formula, given by the Cramér-Rao inequality/bound.

Theorem 5.6 (Cramér-Rao Inequality)
Let X1, . . . , Xn be a sample (not necessarily iid) with joint pdf f(x|θ), and let W (X) = W (X1, . . . , Xn) be any estimator
satisfying

d

dθ
EθW (X) =

∫
X

∂

∂θ
W (x)f(x|θ) dx and VarθW (X) <∞ (1)

Then,

VarθW (X) ≥
(

d
dθEθW (X)

)2
Eθ

[(
∂
∂θ log f(X|θ)

)2]

Proof. Recall by Cauchy-Schwarz that

|Cov(X,Y )|2 ≤ (VarX)(VarY ) =⇒ Var(X) ≥ |Cov(X,Y )|2

Var(Y )
.

Let X =W (X) and let Y = ∂
∂θ log f(X|θ). Then, because we can switch the order of differentiation and integration by (1),

E[Y ] = E
[
∂

∂θ
log f(X|θ)

]
= E

[
∂
∂θf(X|θ)
f(X|θ)

]
=

∫
X

∂

∂θ
f(X|θ) dX =

∂

∂θ

∫
X
f(X|θ) dX =

∂

∂θ
1 = 0.

Thus, Var(Y ) = E[Y 2] and, by a similar computation as above,

Cov(X,Y ) = E[X · Y ]− E[X] · E[Y ] = E
[
W (X) · ∂

∂θ
log f(X|θ)

]
=

∫
X
W (X) · ∂

∂θ
log f(X|θ) dX =

∂

∂θ
E[W (X)].

■

Note that (1) is a fairly reasonable condition: that we can switch the order of differentiation and integration. It will hold for
many standard pdf’s and estimators, and is ensured, for instance, if the integrand W (x) · f(x|θ) and its derivative (w.r.t. θ) are
uniformly bounded.

Corollary 5.7 (Cramér-Rao Inequality or Information Inequality, i.i.d. case)

If the assumptions of the previous theorem are satisfied and, additionally, if X1, . . . , Xn
i.i.d.∼ f(x|θ), then

Varθ(W (X)) ≥
(

d
dθEθW (X)

)2
n · Eθ

[(
∂
∂θ log f(X|θ)

)2]
For unbiased estimators Eθ[W (X)] = θ, the RHS numerator will be 1 and thus the Cramér-Rao lower bound looks like:

Varθ(W (X)) ≥ 1

n · Eθ

[(
∂
∂θ log f(X|θ)

)2] .

Proof. Use the fact that the joint pdf factors: f(X|θ) =
∏n

i=1 f(Xi|θ) and expand the square in the RHS denominator after
converting the log of a product to a sum of logs. The cross-terms will vanish. ■

The Cramér-Rao inequality for discrete distributions/pmf’s is analogous with the only modification being in (1), where the
integral changes to a sum.

The quantity Eθ

[(
∂
∂θ log f(X|θ)

)2] in the lower bound is called the Fisher information. It is so-called since the larger it is, i.e. the
more information we have, the more possible it is to better estimate θ (by decreasing the variance and hence the MSE). The
Fisher information can in fact be computed with two different formulas.
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Theorem 5.8
If f(x|θ) satisfies

d

dθ
Eθ

[
∂

∂θ
log f(X|θ)

]
=

∫
∂

∂θ

((
∂

∂θ
log f(x|θ)

)
f(x|θ)

)
dx

(again, a mild condition that we can exchange differentiation and integration; this is true for most common families of
distributions), then

Eθ

[(
∂

∂θ
log f(X|θ)

)2
]
= −Eθ

[
∂2

∂θ2
log f(X|θ)

]

Theorem 5.9 (multivariate Fisher information and multivariate Cramér-Rao)

Suppose θ = (θ1, . . . , θp) ∈ Rp. Then, the Fisher information matrix of θ with respect to sample X1, . . . , Xn
i.i.d.∼ f(x|θ) is the

p× p matrix I(θ) with (i, j)-th entry:

Ii,j := E
[(

∂

∂θi
log(f(x|θ)

)
·
(
∂

∂θj
log(f(x|θ)

)]
= −E

[
∂2

∂θi∂θj
log(f(x|θ))

]
.

Let T (X) = (T1(X), . . . , Tp(X)) be an estimator of θ and denote by its expectation ψ(θ) := Eθ[T (X)] ∈ Rp. The multivariate
Cramér-Rao bound then states

Covθ(T (X)) ⪰
(
∂ψ(θ)

∂θ

)
· [I(θ)]−1

(
∂ψ(θ)

∂θ

)T

,

where ∂ψ(θ)/∂θ is the Jacobian matrix of ψ(θ) with respect to θ, and where the ordering on matrices “A ⪰ B” means that
A−B is p.s.d. or λmin(A−B) ≥ 0.

Theorem 5.10 (Fisher information of transformation)

If we are interested in a function of a parameter τ = τ(θ), then the Fisher information I(τ) := Eτ

[(
∂
∂τ log f(X|θ)

)2] of τ can
be obtained from the Fisher information I(θ) of θ, via chain rule:

I(θ) = I(τ(θ)) ·
(
∂τ

∂θ

)2

.

If θ, τ ∈ Rp, then we have
I(θ) = JT I(τ(θ))J,

where J is the p× p Jacobian matrix with (i, j)-th coordinate Jij = ∂τi
∂θj

.

The question remains, however, as to which estimator W attains the Cramér-Rao lower bound. The answer turns out to be
surprisingly simple.

Corollary 5.11 (attainment of Cramer-Rao bound)
Let X1, . . . , Xn be iid f(x|θ), where f(x|θ) satisfies the conditions of the Cramer-Rao inequality. Let L(θ|x) =

∏n
i=1 f(xi|θ)

denote the likelihood function. If W (X) =W (X1, . . . , Xn) is any unbiased estimator of θ, then W (X) attains the Cramer-Rao
lower bound iff

a(θ)(W (x)− θ) =
∂

∂θ
logL(θ|x)

for some function a(θ), i.e. if the log-likelihood and W (x) are proportional to each other as in the equality case of Cauchy-
Schwarz.

Proof. This follows from the equality case of Cauchy-Schwarz Cov(X,Y )2 ≤ Var(X) · Var(Y ) which occurs when X and Y are
linear transformations of each other. ■
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5.3 Bayes risk

Definition 5.12 (risk function). Recall we considered a loss function L(θ,W ) and assessed the quality of an estimator by
considering the average loss R(θ,W ) := Eθ[L(θ,W )]. This is also called the risk function, and is a function of θ.

We discussed previously how it might be difficult to compare two estimators based on their risk functions R(θ, ·) since this varies
with θ. However, in the Bayesian setup, we can further average out by the prior distribution π(θ) to obtain an “average risk” of
an estimator W over all θ.

Definition 5.13 (Bayes risk). For a prior distribution π(θ), we define the Bayes risk to be∫
Θ

R(θ,W )π(θ) dθ

An estimator that yields the smallest value of the Bayes risk is called the Bayes rule with respect to a prior π, and is denoted Wπ.

Remark 5.14. For X ∼ f(x|θ) and θ ∼ π, the Bayes risk of an estimator W can be written as∫
Θ

R(θ,W )π(θ) dθ =

∫
Θ

(∫
X
L(θ,W (x))f(x|θ) dx

)
π(θ) dθ

Now, write f(x|θ)π(θ) = π(θ|x)m(x) where π(θ|x) is the posterior distribution of θ and m(x) is the marginal distribution of X so that∫
Θ

R(θ,W )π(θ) dθ =

∫
X

[∫
Θ

L(θ,W (x))π(θ|x) dθ
]
m(x) dx

The quantity in square brackets is called the posterior expected loss and is a function only of x and not of θ. Thus, for each x, if we choose
W (x) to minimize the posterior expected loss, we will minimize the Bayes risk.

Example 5.15 (two Bayes rules)
Consider a point estimation problem for a real-valued parameter θ.

1. For squared error loss, the posterior expected loss is∫
Θ

(θ − a)2π(θ|x) dθ = E[(θ − a)2|X = x]

Here θ is the random variable with distribution π(θ|x). This expected value is minimized by Wπ(x) = E[θ|x]. So the
Bayes rule is the mean of the posterior distribution.

2. For absolute error loss, the posterior expected loss is E[|θ − a||X = x]. We can see that this is minimized by choosing
Wπ(x) to be the median of π(θ|x).
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6 Problems

6.1 Previous Core Competency Problems

Problem 1 (May 2018, # 3). Let W1,W2, . . . ,Wk be unbiased estimators of a parameter θ with Var(Wi) = σ2
i and Cov(Wi,Wj) = 0

if i ̸= j.

(a) Show that among all estimators of the form
∑k

i=1 aiWi, where ai’s are constants and Eθ(
∑

i aiWi) = θ, the estimator
W ∗ =

∑
i Wi/σ

2
i∑

i 1/σ
2
i

has minimum variance.

(b) Show that Var(W ∗) = 1∑
i 1/σ

2
i

.

Problem 2 (May 2018, # 6). Consider observed response variables Y1, . . . , Yn ∈ R that depend linearly on covariates x1, . . . , xn
as follows:

Yi = βxi + ϵi, for i = 1, . . . , n.

Here, the ϵi’s are independent Gaussian noise variables, but we do not assume they have the same variance. Instead, they are
distributed as ϵi ∼ N(0, σ2

i ) for possibly different variances σ2
1 , . . . , σ

2
n. The unknown parameter of interest is β.

(a) Suppose that the error variances σ2
1 , . . . , σ

2
n are all known. Find the MLE β̂ for β in this case and derive an explicit formula

for β̂. Show that β̂ minimizes a certain weighted least-squares criterion.

(b) Show that the estimate β̂ in part (a) is unbiased, and derive a formula for the variance of β̂ in terms of σ2
1 , . . . , σ

2
n and

x1, . . . , xn.

(c) Compute the Fisher information I(β) in this model (still assuming σ2
1 , . . . , σ

2
n are known constants). Compare this value

with the variance of β̂ derived in part (b).

Problem 3 (May 2018, # 7). Suppose that X ∼ Poisson(λ) and its parameter λ > 0 has a prior distribution Gamma(α, β) given
by density

f(y|α, β) = βα

Γ(α)
e−yβyα−1, for y ≥ 0, (and 0 otherwise).

(a) Find the posterior distribution of λ given the observation X, and identify the distribution with its parameters.

(b) Find the mean of this posterior distribution.

Problem 4 (May 2018, # 8). Suppose X1, X2
i.i.d.∼ Ber(p) for some unknown parameter p ∈ (0, 1). Find an unbiased estimator for

the following functions of p, if there exists one.

(a) g(p) = 2p.

(b) g(p) = p(1− p).

(c) g(p) = p2.

(d) g(p) = p3.

Problem 5 (September 2019, # 7). Suppose that X1, . . . , Xn are i.i.d. uniform random variables on [0, θ] for some θ ∈ [1, 2].

(i) What is the MLE of θ?

(ii) Suppose that, instead of Xi’s, we only observe, for all i = 1, . . . , n,

Yi =

{
Xi if Xi ≤ 1

0 otherwise.

What is the MLE of θ based on {Y1, . . . , Yn}?
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Problem 6 (September 2019, # 8). Suppose that a measurement Y is recorded with a N(θ, σ2) sampling distribution, with σ
known and θ known to lie in the interval [0, 1] (but otherwise unknown). Consider two point estimators of θ: (a) the posterior
mean θ̂B based on the assumption of a uniform prior distribution on θ on [0, 1], and (b) the maximum likelihood estimate θ̂M ,
restricted to the range [0, 1].

(i) Show that, as σ → ∞, θ̂B converges in distribution (to Y1, say). Identify the limit Y1. [Hint: You may first find the distribution
of Θ|Y = y and then take limits.]

(ii) Show that, as σ → ∞, θ̂M converges in distribution (to Y2, say). Identify the limit Y2.

(iii) If σ is large enough, which estimator θ̂M or θ̂B has a higher mean squared error, for any value of θ in [0, 1]. You may answer
this question by comparing the mean squared errors of Y1 and Y2 for estimating θ.

Problem 7 (May 2020, # 6). Suppose that we have single observation from X from the exponential distribution with parameter
λ. Define T (X) = I(X > 1), where I is the indicator function. Set ψ(λ) := e−λ.

(i) Show that T (X) is unbiased for ψ(λ).

(ii) Find the (Fisher) information bound for unbiased estimators of ψ(λ).

(iii) Show that the variance of T (X) is strictly larger than the information bound.

Problem 8 (September 2020, # 5). Consider the following Bayesian model

Y1, . . . , Yn
iid∼ Uniform([0, θ]) and θ ∼ Pareto(β, λ, )

where the pdf of the Pareto distribution is given by

π(θ;β, λ) =
βλβ

θ(β+1)
, θ > λ, β, λ > 0.

Moreover, for this exercise you may assume β > 1.

(a) Use the Bayes formula to derive the posterior density of θ as explicitly as possible.

(b) Compute the prior and posterior means of θ.

Problem 9 (May 2021, # 1). Let X1, . . . , Xn be an i.i.d. random sample with common density function

f(x) =

{
3θ3x−4 for x ≥ θ

0 otherwise
,

where θ > 0 is an unknown parameter.

(i) Apply the method of moments to obtain an unbiased estimator of θ.

(ii) Find the maximum likelihood estimator (MLE) of θ and show that it is biased.

(iii) Which of the above two estimators has a smaller mean squared error (MSE)?

Problem 10 (September 2021, # 1). Let X1, . . . , Xn be an i.i.d. sample with common density

f(x; θ) =

{
e−(x−θ) x ≥ θ

0 otherwise,

where θ > 0 is an unknown parameter.

(i) Find a one dimensional sufficient statistic Tn.

(ii) Derive the cumulative distribution function Fn of Tn.

(iii) Give an exact (1− α)-confidence interval for θ. (Hint: What is the distribution of Fn(Tn)?).
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Problem 11 (September 2021, # 2). Let X and Y be two independent exponential random variables with parameters λ and µ,
respectively, i.e. P(X ≥ x, Y ≥ y) = e−λx−µy, x ≥ 0, y ≥ 0. Define random variables

T = min(X,Y ) and ∆ =

{
1 X < Y

0 otherwise.

(i) Find the probability density function of T and the probability mass function of ∆.

(ii) Find the joint distribution function of (T,∆).

(iii) Suppose we have a random sample (Ti,∆i), i = 1, . . . , n, i.e. i.i.d. copies of (T,∆). Write down the likelihood function and
find the MLE of λ.

6.2 Additional Practice

Problem 12 (Casella & Berger, Exercise 7.12). Let X1, . . . , Xn be a random sample from a population with pmf

Pθ(X = x) = θx(1− θ)1−x, x = 0 or 1, 0 ≤ θ ≤ 1

2
.

(i) Find the method of moments estimator and MLE of θ.

(ii) Find the mean squared errors of each of the estimators.

(iii) Which estimator is preferred? Justify your choice.
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