
Review Session 7 – Hypothesis Testing

References/suggested reading

(i) Casella & Berger, chapter 8.

1 Introduction

In hypothesis testing, we are concerned with assessing the validity of a statement about an unknown population parameter,
θ, using an observed sample X1, . . . , Xn ∼ fθ. For example, we might want to know whether the mean of the underlying
distribution is large or small, or even just positive or negative. As in said example, it is typical to consider two complementary
hypotheses which are formally represented by sets Θ0 and Θ1 partitioning the space of possible parameter values Θ = Θ0 ⊔Θ1

(e.g., Θ0 = (−∞, 0] and Θ1 = (0,∞)). The goal is then to decide, based on our sample, which of the two hypotheses “θ ∈ Θ0”
or “θ ∈ Θ1” is true. Of course, this is not a determination we can make correctly based on every sample, due to the inherent
randomness in the problem. However, we’d like to minimize the “probability of making an error”, or the probability that one
hypothesis has been chosen given that the other one is in fact true..
Up to this point, we’ve treated the two hypotheses on an equal basis. In practice, though, we make an epistomological distinction
by letting one of the hypotheses, the null hypothesis denoted H0, be a default or initial claim (e.g., there is no treatment effect
in an experiment or there is no difference between two populations) which stands to be disproved in a hypothesis test if we
choose the other alternative hypothesis, denoted H1. The null hypothesis H0 typically follows the general principle of parsimony,
or Occam’s razor, that the underlying reality is “simple” or explained by conventional wisdom. Thus, the onus is on us to provide
evidence that disproves or rejects the simpler null hypothesis.

2 Terminology

Suppose X1, . . . , Xn
i.i.d.∼ fθ and we consider hypotheses H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1. A hypothesis test, or decision procedure,

for choosing one of H0 or H1 is specified in terms of the value of a test statistic W (X1, . . . , Xn). For example, if θ = EX∼fθ [X]
and we were testing H0 : θ ≤ 0 vs H1 : θ > 0, we might use the test statistics W (X1, . . . , Xn) = Xn and choose to reject H0 if
W (X1, . . . , Xn) is large, and accept H0 if W (X1, . . . , Xn) is small.
The critical region, or rejection region denoted R, is the set of values of W (X1, . . . , Xn) for which we would reject H0, so that
its complement is the set of values for which we would accept H0. Thus, a decision procedure is completely defined by a test
statistic and critical region (W (X1, . . . , Xn), R).
If H0 is true (i.e., θ ∈ Θ0), but a hypothesis test (W (X1, . . . , Xn), R) incorrectly decides to reject H0, then the test has made a
Type I Error. On the other hand, if θ ∈ Θ1, but the test decides to accept H0, a Type II Error has occurred. We can speak about
the probability of making a Type I error for each θ ∈ Θ0 by computing Pθ(W (X1, . . . , Xn) ∈ R). Similarly, for each θ ∈ Θ1, the
probability of committing a Type II error will be given by 1− Pθ(W (X1, . . . , Xn) ∈ R).
The power function of a test (W (·), R) is the function β of θ defined by β(θ) = Pθ(W (X1, . . . , Xn) ∈ R). Ideally, we would like the
power function to be 0 for all θ ∈ Θ0 and 1 for all θ ∈ Θ1 (thus, making both Type I and II error probabilities zero), but this cannot
be attained in most situations of interest.
For α ∈ [0, 1] we say a test with power function β(θ) is size α if supθ∈Θ0

β(θ) = α, and that it is level α if supθ∈Θ0
β(θ) ≤ α.

Going back to our distinction of the null vs. the alternative hypotheses, generally one of the two errors (Type I or II) is more
costly or less palatable in practice, and the hypotheses should be arranged so that the Type I error is to be avoided. Thus, a
decent test is one which is level α for some small α. Note that a test which never rejects (or such that R = ∅) will always be level
α, but is a very uninformative test of course. So, the goal should be to find a test which is level α and also achieves a small Type
II error probability, if possible.
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Example 2.1 (two-sided Z-test)

Let X1, . . . , Xn
i.i.d.∼ N (θ, 1) with θ0 = {0} and Θ1 = R\{0}. Then, the hypotheses are H0 : θ = 0 vs. H1 : θ ̸= 0. One

natural approach is to estimate θ by Xn. We reject H0 if |Xn| > c for some cutoff c. Suppose H0 is true so that we have
Xn ∼ N (0, 1/n). The probability of making a Type I error is then

P(|N (0, 1/n)| > c).

So, we see that as we increase c, the probability of Type I error decreases. However, since Xn ∼ N (θ, 1/n) for θ ∈ Θ1 under
H1, we see that the probability of Type II error increases (as our rejection region becomes smaller and smaller).
To make our test level α, we should choose c = Φ−1(1− α/2) · n−1/2, where Φ(·) is the standard normal cdf.

In the above example, we can change α in the formula c = Φ−1(1 − α/2) · n−1/2 to get hypothesis tests at different levels α.
Smaller α will correspond to smaller rejections regions. At the same time, an observed test statistic Xn will be rejected for some
choices of α’s (i.e., larger α’s) and accepted for others (i.e., smaller α’s). One way of quantifying the strength of the decision
made for a particular sample (X1, . . . , Xn) is to report the p-value, or the smallest level α0 for which we would reject the null
hypothesis at level α0 with the observed data. This allows us to capture the continuum of all values α for which H0 would have
been rejected based on the data at level α, namely α > α0.
Following the above example, we see that by solving for α in Φ−1(1− α/2) · n−1/2, the p-value for the two-sided Z-test is:

α0 = 2 · (1− Φ(|Xn| ·
√
n)) = 2 · PZ∼N (0,1)(Z > |Xn| ·

√
n|X1, . . . , Xn).

From this, we see that one interpretation of the p-value is that it is the probability that we would have observed a test statistic at
least as extreme, or deviant from the null, as the one we observed from the sample.

Example 2.2 (two sided t-test)

Suppose X1, . . . , Xn
i.i.d.∼ N (θ, σ2) where σ is this time unknown, and we are again testing H0 : θ = 0 vs. H1 : θ ̸= 0.

Then, we can estimate σ with the sample standard deviation s =
√

1
n−1

∑n
i=1(Xi −Xn)2 and use the test statistic Xn/s

which is distributed as 1/
√
n times a Student’s t distribution Tn−1 under the null. Thus, a level α test with rejection

region {|Xn/s| > c} would then choose c such that P(|Tn−1/
√
n| > c) ≤ α, our p-value would then be, similar to before,

2 · P(Tn−1 ≥ |Xn|/(s/
√
n)|X1, . . . , Xn).

3 Equivalence of hypothesis tests and confidence sets

Again, consider the normal setup X1, . . . , Xn
i.i.d.∼ N (θ, σ2), with σ known where this time we are interested in testing H0 : θ = θ0

vs. H1 : θ ̸= θ0. Similar to before, we can consider the two-sided Z-test with acceptance region

|Xn − θ0| ≤ Φ−1
(
1− α

2

)
· σ · n−1/2,

which we know is size α. The above translates to
Xn − Φ−1

(
1− α

2

)
· σ · n−1/2 < θ0 < Xn +Φ−1

(
1− α

2

)
· σ · n−1/2.

We can think of the lower and upper bounds above as bounds on the possible null hypothesis values θ0 for which we would not
reject the given data {X1, . . . , Xn} at level α.
In fact, this gives us a confidence set or interval for θ, i.e. a random interval which contains the true value of θ with probability
1 − α. In particular, since we know the test is size α, we know that under the null (i.e., N (θ0, σ

2) is the true data-generating
distribution) the above inequalities will be true with probability 1− α.
Thus, the interval (

Xn − Φ−1
(
1− α

2

)
· σ · n−1/2, Xn +Φ−1

(
1− α

2

)
· σ · n−1/2

)
,

covers the true value of θ with probability 1− α, i.e. is a confidence set at level 1− α.
We can also go in the reverse direction: given a level γ confidence interval for θ, we can derive a level 1− γ hypothesis test. This
will typically amount to doing the reverse of the above, or solving for some critical value in the confidence interval bounds.
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Example 3.1 (deriving a test from a confidence interval)

Consider again the t-test setup where X1, . . . , Xn
i.i.d.∼ N (θ, σ2) where σ is unknown. By standardizing the sample mean Xn

via the sample standard deviation s, we can establish that(
Xn − T−1

n−1

(
1 + γ

2

)
· s

n1/2
, Xn + T−1

n−1

(
1 + γ

2

)
· s

n1/2

)
,

is a γ confidence interval for θ, where T−1
n−1(·) is the quantile function of the Student’s t distribution with n− 1 degrees of

freedom. But, θ lying in the above interval translates to∣∣∣∣n1/2 · Xn − θ

s

∣∣∣∣ ≤ T−1
n−1

(
1 + γ

2

)
.

Thus, we obtain the two-sided t-test from before.

The general result is as follows:

Theorem 3.2 (deriving confidence sets from tests)
Let X = (X1, . . . , Xn) be a random sample from a distribution with parameter θ. Suppose for each value θ0, there is a level α
test δθ0 of the hypotheses H0,θ0 : θ = θ0 and H1,θ0 : θ ̸= θ0. For each possible value x of X, define

C(x) = {θ0 : test δθ0 does not reject H0,θ0 if X = x is observed}.

We can think of C(x) as just “inverting” the acceptance region of test δθ0 to solve for θ0, as we did in the previous example.
Then, the random set C(X) satisfies

Pθ=θ0(θ0 ∈ C(X)) ≥ 1− α.

Proof. The proof follows from the definition of δθ0 being a level α0 test for H0 : θ = θ0 vs. H1 : θ ̸= θ0. ■

Theorem 3.3 (deriving tests from confidence sets)
Let X = (X1, . . . , Xn) be a random sample from a distribution with parameter θ. Let C(X) be a 1−α confidence set for θ. For
each parameter value θ0, the test which does not reject H0 : θ = θ0 (vs. H1 : θ ̸= θ0) if and only if θ0 ∈ C(X) is a level α test.

4 Likelihood ratio test

The likelihood ratio test is a popular type of hypothesis test related to maximum likelihood estimation. Recall that if X1, . . . , Xn
i.i.d.∼

fθ, then the likelihood function is defined as, for observations x1, . . . , xn,

L(θ|x1, . . . , xn) = L(θ|x) =
n∏

i=1

f(xi|θ).

Definition 4.1 (likelihood ratio test statistic). The likelihood ratio test statistic (LRT) for testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc
0 is

λ(x) =
supΘ0

L(θ|x)
supΘ L(θ|x)

where L(θ|x) is the likelihood function and where Θ = Θ0 ⊔Θc
0. A likelihood ratio test is any test that has a rejection region of the

form
{x : λ(x) ≤ c}

where c ∈ [0, 1].
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Intuitively, the LRT is small if there are parameter points θ in the alternative hypothesis Θc
0 for which the observed sample

is much more likely than for any parameter in the null hypothesis. On the other hand, the LRT is large and close to 1 if the
likelihood is maximized at a θ ∈ Θ0. Thus, we should reject H0 for small values of λ(x). Likelihood ratio tests enjoy certain
theoretical properties which make them more favorable over other tests (cf. the Neyman-Pearson lemma in the next section)
and also a simple asymptotic form, which we will cover in the final review session.
From the definition, we see that computing the LRT amounts to solving two MLE problems, (1) an unrestricted MLE over the
entire parameter space Θ in the denominator and (2) a restricted MLE over Θ0 in the numerator. The LRT can then be computed
by plugging in the respective MLE’s into the likelihood function.

Example 4.2 (normal LRT)

Let X1, . . . , Xn
i.i.d.∼ N (θ, 1) population. Consider testing H0 : θ = θ0 versus H1 : θ ̸= θ0. Then, we have

λ(x) = L(θ0|x)
L(xn|x)

since the observed sample mean xn is the MLE of θ. This becomes

λ(x) = exp

((
−

n∑
i=1

(xi − θ0)
2 +

n∑
i=1

(xi − xn)
2

)
/2

)
= exp(−n(xn − θ0)

2/2)

whence the rejection region can be written as

{x : |xn − θ0| ≥
√

−2(log c)/n}.

Thus, the normal LRT is the same as the two-sided Z-test we saw before.

Example 4.3 (one-sided normal LRT)

Let X1, . . . , Xn
i.i.d.∼ N (θ, σ2) with σ2 known. An LRT of H0 : θ ≤ θ0 versus H1 : θ > θ0 is in fact a test that rejects H0 if

(X − θ0)/(σ/
√
n) > c (the details are similar to the previous example) where c > 0. The power function is then:

β(θ) = Pθ

(
Xn − θ0
σ/

√
n

> c

)
= Pθ

(
Xn − θ

σ/
√
n

> c+
θ0 − θ

σ/
√
n

)
= Pθ

(
Z > c+

θ0 − θ

σ/
√
n

)
,

where Z is a standard normal random variable since (Xn − θ)/(σ/
√
n) ∼ N(0, 1). From this, we see that the power function

β(θ) is increasing in θ with limθ→−∞ β(θ) = 0, limθ→∞ β(θ) = 1, and β(θ0) = Pθ0(Z > c).

Example 4.4 (binomial two-sided LRT)
Suppose we observe Y ∼ Binomial(n, θ) where θ is unknown and we wish to test H0 : θ = θ0 vs. H1 : θ ̸= θ0. The likelihood
function is just the pmf

f(y|θ) =
(
n

y

)
θy(1− θ)n−y.

Then, since Θ0 = {θ0} and Θ = [0, 1], the LRT is

λ(y) =
θy0(1− θ0)

n−y

supθ∈[0,1] θ
y(1− θ)n−y

.

Meanwhile, the MLE of θ is θ̂MLE = y/n. Thus, plugging this into the denominator, we find that

λ(y) =

(
nθ0
y

)y (
n(1− θ0)

n− y

)n−y

.

Page 4



Core Competency Review Session 7

Example 4.5 (size of LRT)
A size α LRT is constructed by choosing c such that supθ∈Θ0

Pθ(λ(X) ≤ c) = α. For example, consider the case of the normal
family from before with X1, . . . , Xn

i.i.d.∼ N (θ, 1). We have that Θ0 consists of a single point θ = θ0 and √
n(X − θ0) ∼ N (0, 1) if

θ = θ0. So the test
reject H0 if |X − θ0| ≥ zα/2/

√
n

where zα/2 is the standard normal critical value, is the size α LRT. This corresponds to choosing c = exp(−z2α/2/2).

5 Methods of comparing tests

Definition 5.1 (uniformly most powerful). Let C be a class of tests for testing H0 : θ ∈ θ0 versus H1 : θ ∈ Θc
0. A test in class C,

with power function β(θ), is a uniformly most powerful (UMP) class C test if β(θ) ≥ β′(θ) for every θ ∈ Θc
0 and every β′(θ) that is a

power function of a test in class C. Typically, the class C will be the class of all level α tests so that the UMP level α test, while it
may not always exist for a generic problem, is a notion of an optimal or best test among the level α tests.

In a simple setting, it turns out the likelihood ratio test is UMP.

Theorem 5.2 (Neyman-Pearson Lemma)
Consider testing H0 : θ = θ0 versus H1 : θ = θ1, where the pdf or pmf corresponding to θi is f(x|θi) for i = 0, 1 using a test
with rejection region R that satisfies

x ∈ R if f(x|θ1) > cf(x|θ0)

and
x ∈ Rc if f(x|θ1) < cf(x|θ0)

for some c ≥ 0, and
α = Pθ0(X ∈ R)

Then,

1. (Sufficiency) Any test that satisfies both these conditions is an UMP level α test.

2. (Necessity) If there exists a test satisfying both these conditions with c > 0, then every UMP level α test is a size α test
and has the same rejection region as the test above, up to a measure zero set.

Note that the ratio of likelihoods used in Neyman-Pearson f(x|θ0)/f(x|θ1) is slightly different from the way we defined LRT
previously. Namely, the denominator is the maximum likelihood over the alternative hypothesis set Θc

0 rather than the entire
parameter space. These two definitions of likelihood ratio only differ when the unrestricted MLE θ̂MLE lies in Θ0; in this case,
we wouldn’t want to reject H0 anyways under either definition since this is strong evidence in support of H0. So, for most
reasonable levels α, the two tests are equivalent.

Example 5.3 (UMP binomial test)
Let X ∼ binomial(2, θ). We want to test H0 : θ = 1/2 versus H1 : θ = 3/4. Calculating the ratios of the pmfs gives

f(0|θ = 3/4)

f(0|θ = 1/2)
= 1/4,

f(1|θ = 3/4)

f(1|θ = 1/2)
= 3/4,

f(2|θ = 3/4)

f(2|θ = 1/2)
= 9/4

If we choose the cutoff/threshold c ∈ (3/4, 9/4), the Neyman-Pearson Lemma says the test that reject H0 if X = 2 is the UMP
level α = P(X = 2|θ = 1/2) = 1/4 test. If we choose c ∈ (1/4, 3/4), the Neyman-Pearson Lemma says the test that rejects H0

if X = 1, 2 is the UMP level α = P(X = 1 or 2|θ = 1/2) = 3/4 test. Choosing c < 1/4 or c > 9/4 yields the UMP level α = 1 or
level α = 0 test.

Unfortunately, outside of simple hypotheses, an UMP test often does not exist in general. The general difficulty lies in the fact
that a test cannot be simultaneously UMP for different θ ∈ Θ1 in most setups.
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Example 5.4 (nonexistence of UMP test)

Let X1, . . . , Xn
i.i.d.∼ N (θ, σ2) with σ2 known. Consider testing H0 : θ = 0 versus H1 : θ ̸= 0. We claim no UMP level α test

exists for this problem. Let’s first consider testing a specific alternative parameter θ1 < 0. The Neyman-Pearson lemma tells
us that (1) a test that rejects H0 if Xn < σ · zα/

√
n has the highest possible power at θ1 and (2) any other level α test for

H0 : θ = 0 vs. H1 : θ = θ1 that has as high a power as this test at θ1 must have the same rejection region {Xn < σ · zα/
√
n},

up to a set of measure zero.
So, we know that if an UMP level α test exists for testing H0 : θ = 0 vs H1 : θ ̸= 0, it must essentially be the test which rejects
small values of Xn. However, we can repeat these considerations supposing θ1 > 0 and testing H0 : θ = 0 vs. H1 : θ = θ1. In
this case, the Neyman-Pearson lemma tells us that the test with rejection region {Xn > σ · zα/

√
n} is level α. Furthermore,

we can show this test has a higher power at this positive θ1 than the test {Xn < σ ·zα/
√
n}. Thus, the first test could not have

been UMP level α for the composite alternate hypothesis H1 : θ ̸= 0, and so there is no UMP level α test for this problem.
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6 Problems

6.1 Previous Core Competency Problems

Problem 1 (September 2018, # 5). We obtain observations Y1, . . . , Yn which can be described by the relationship

Yi = i× θ + ϵi,

where ϵ1, . . . , ϵn are i.i.d. N(0, σ2); σ2 > 0. Here θ and σ2 are unknown.

(i) Find the least squares estimator θ̂ of θ; i.e., θ̂ = argminθ∈R
∑n

i=1(Yi − iθ)2.

(ii) Is θ̂ unbiased?

(iii) Find the exact distribution of θ̂.

(iv) Find the asymptotic (non-degenerate) distribution of θ̂ (properly normalized).

(v) How would you test the hypothesis H0 : θ = 0 versus H1 : θ ̸= 0 (at level (α ∈ (0, 1))? Describe the test statistic and the
critical value.

Problem 2 (2019 May, # 1). Let X ∼ Poisson(λ) and Y ∼ Poisson(µ), where λ, µ > 0 and assume that X and Y are independent.

(i) Find the conditional distribution of X given that X + Y = n.

(ii) Use the above, or otherwise, to test the hypothesis (at level α ∈ (0, 1))

H0 : λ = µ versus λ > µ.

Problem 3 (2020 May, # 5). Suppose that X1, . . . , Xn are i.i.d. observations from the exponential distribution with parameter λ
(recall that E(X1) = λ−1). Consider the following testing problem:

H0 : λ = λ0 versus H1 : λ = λ1,

where 0 < λ1 < λ0. Let f0(X1, . . . , Xn) be the likelihood of the data under H0 and f1(X1, . . . , Xn) that under H1.

(i) Show that log f1(X1,...,Xn)
f0(X1,...,Xn)

is an increasing function of Xn := 1
n

∑n
i=1 Xi.

(ii) Suppose that cα,n is such that Pλ0(Xn ≥ cα,n) = α, for α ∈ (0, 1). Relate cα,n to qk(β) – the β-th quantile of the χ2
k distribution

(for some k).

(iii) How would you test the hypothesis

H0 : λ = λ0 versus H1 : λ < λ1,

Derive an expression for the power function of the test.

Problem 4 (2020 May, # 7). Consider the random variable X = µ + σZ, where µ ∈ R, σ > 0 and Z is a random variable with
density f . Suppose that µ and σ are unknown parameters and that the density f is known (completely specified). We have a
random i.i.d sample X1, . . . , Xn with the same distribution as X. You may assume for this problem that E[Z] = 0, E[|Z|] < ∞, and
Var(Z) ∈ (0,∞).

(i) Propose unbiased estimators, µ̂ and σ̂2, of µ and σ2.

(ii) Does the joint distribution of (Xi − µ̂)/σ̂ (i = 1, . . . , n) depend on µ and σ? Explain your answer.

(iii) For a given level α ∈ (0, 1), describe a way to construct a confidence interval for µ with exact coverage probability 1− α.

Note: I added some extra assumptions to this problem (in italics) since I don’t think the problem is solvable without them in
general.
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Problem 5 (2020 September, # 1). Researchers notice that a mutation in a gene predisposes individuals to a kind of radiation-
induced cancer. The researchers theorize that the gene is involved in repairing damage from radiation, and that the mutation
disables the gene. To explore their theory, the researchers obtain cells growing in a laboratory that have the mutation. They
take eight different clumps of the cells, and randomize the clumps to treatment with radiation or no radiation (four in each
group). They then examine a marker of damage from radiation in each cell in each clump, recording whether or not there
appears to be damage. The researchers run the same experiment in clumps of cells that do not have the mutation. They explain
that the cells that do not have the mutation are a “control”. The researchers ask you to analyze the results.

(a) Propose a “reasonable” model to analyze the data.

(b) Propose how you plan to conclude whether mutation plays a role in repairing radiation damage.

Problem 6 (2020 September, # 3). Suppose that (X1i, X2i)
i.i.d.∼ N2(θ, I2) for 1 ≤ i ≤ n, where the parameter space is restricted to

Θ := {θ = (θ1, θ2) : θ1, θ2 ≥ 0}. Consider the following hypothesis testing problem:

H0 : θ = (0, 0) versus H1 : θ ∈ Θ\{(0, 0)}.

(a) Find the MLE of θ (when θ ∈ Θ).

(b) Find an expression for the likelihood ratio statistic Λn ∈ (0, 1] in this case.

(c) Find the asymptotic distribution of −2 log Λn, under H0 [Hint: You may want to consider the cases where (X1, X2) belongs
to each of the four quadrants separately.]

Problem 7 (2021 May, # 2). Let X1, X2, . . . , Xn be from an i.i.d. random sample Uniform(0, θ), where θ > 0 is an unknown
parameter. Suppose that we want to test the following hypothesis:

H0 : 3 ≤ θ ≤ 4 versus H1 : θ < 3 or θ > 4. (1)

Let Yn = max{X1, . . . , Xn}. Consider the following two tests:

δ1 : Reject H0 if Yn ≤ 2.9 or Yn ≥ 4

and
δ2 : Reject H0 if Yn ≤ 2.9 or Yn ≥ 4.5.

(i) Find the power functions of δ1 and δ2, when θ ≤ 4

(ii) Find the power functions of δ1 and δ2, when θ > 4.

(iii) Which of the two tests seems better for testing the hypothesis (1)?

6.2 Additional Practice

Problem 8 (Casella & Berger, Exercise 8.8). A special case of a normal family is one in which the mean and variance are related,
the N (θ, a · θ) family.

(a) Find the LRT of H0 : a = 1 versus H1 : a ̸= 0 based on a sample X1, . . . , Xn
i.i.d∼ N (θ, a · θ), where θ is unknown.

(b) Now consider the N (θ, a · θ2) family. If X1, . . . , Xn
i.i.d.∼ N (θ, a · θ2), where θ is unknown, find the LRT of H0 : a = 1 versus

H1 : a ̸= 1.

Problem 9 (Casella & Berger, Exercise 8.13). Let X1, X2 be i.i.d. Unif[(θ, θ + 1)]. For testing H0 : θ = 0 versus H1 : θ > 0, consider
two competing tests:

ϕ1(X1) : Reject H0 if X1 > .95.
ϕ2(X1, X2) : Reject H0 if X1 +X2 > C.

(i) Find the value of C so that ϕ2 has the same size (i.e., probability of committing a Type 1 error) as ϕ1.

(ii) Calculate the power function of each test.

(iii) Which test ϕ1 or ϕ2 is more powerful (i.e., has larger power function)? Does it depend on the value of θ?
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