
Review Session 8 – Asymptotic Analysis of Tests and Estimators

References/suggested reading

(i) Casella & Berger sections 5.5.4, 10.1, 10.3.

1 Introduction

Building on previous review sessions, we’ll study the asymptotic properties of the point estimation and hypothesis testing
procedures we’ve developed thus far. In particular, we will focus on the maximum likelihood estimator (MLE), and this will in turn,
not too surprisingly, give us information about the asymptotics of the likelihood ratio test statistic for the hypothesis problem.

2 Consistency

Definition 2.1 (consistency). A sequence of estimators Wn = Wn(X1, . . . , Xn) is a consistent sequence of estimators of the
parameter θ if, Wn

P−→ θ or for every ϵ > 0 and θ ∈ Θ:
lim
n→∞

Pθ(|Wn − θ| < ϵ) = 1.

Example 2.2 (consistency of Xn and S2)
Recall from Review Session 5 that the sample mean Xn is a consistent estimator of E[X] (by the law of large numbers)
and the sample variance S2

n is a consistent estimator of Var(X), provided that Var(S2
n) → 0. The proof of this last fact used

Chebyshev’s inequality or that

Pθ(|S2
n −Var(X)| ≥ ϵ) ≤ E(S2

n −Var(X))2

ϵ2
=

Var(S2
n)

ϵ2
n→∞→ 0.

We can apply this technique more broadly. Chebyshev gives us for a generic sequence of estimators {Wn}∞n=1,

Pθ(|Wn − θ| ≥ ϵ) ≤ Eθ[(Wn − θ)2]

ϵ2
.

Thus, if the MSE Eθ[(Wn − θ)2] → 0, then we know this sequence of estimators is consistent. Furthermore, the bias-variance
decomposition gives us a more refined way of guaranteeing the consistency of Wn:

Eθ[(Wn − θ)2] = Varθ(Wn) + (Eθ(Wn)− θ)2.

Theorem 2.3
If {Wn}∞n=1 is a sequence of estimators of a parameter θ satisfying

1. limn Varθ(Wn) = 0.

2. limn(Eθ(Wn)− θ) = 0,

for every θ ∈ Θ, then {Wn}∞n=1 is a consistent sequence of estimators of θ. In particular, if {Wn}∞n=1 is a sequence of unbiased
estimators, then it suffices to have limn Varθ(Wn) = 0 for all θ ∈ Θ.
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Sometimes, we are interested in a linear transformation of an estimator. For example, we may consider the sample variance to
take the unbiased form S2

n := 1
n−1

∑n
i=1(Xi −Xn)

2 or the form of the MLE S2
n := 1

n

∑n
i=1(Xi −Xn)

2. Recall that Slutsky’s theorem
tells us that if An

P−→ A and bn P−→ b where {bn}∞n=1 is a real sequence, then An · bn
P−→ A · b. Thus, the consistency of one of these

estimators immediately implies the consistency of the other. This applies much more broadly as we see in the following result.

Theorem 2.4
Let {Wn}∞n=1 be a consistent sequence of estimators of a parameter θ. Let {an}∞n=1, {bn}∞n=1 be sequences of constants
satisfying limn an = 1 and limn bn = 0. Then, the sequence Un = an ·Wn + bn is a consistent sequence of estimators of θ.

3 The Delta Method

Beyond the fact that a sequence of estimators {Wn}∞n=1 is consistent, we often want to understand the rate of its convergence
to a parameter θ, similar to how the Central Limit Theorem gives us rates of convergence on the estimator Xn for E[X]. In
particular, we’d like to understand the limiting behavior of the deviations Wn − θ and, in particular, determine how fast it goes to
0. Here, “how fast” should make you think of big-oh O(·) and little-oh o(·) notation. Asymptotic notation describes the speed of
convergence as a sequence of real numbers {en}∞n=1 such that Wn−θ

en
goes to a constant. However, here, Wn − θ is a random

variable. So, we’ll rephrase this as seeking a sequence of real numbers {en}n such that Wn−θ
en

converges in distribution to some
non-degenerate distribution.
We’ve already seen one example of such a characterization: the central limit theorem tells us that for the sample mean estimator
Xn of the population mean µ = E[X], we have √

n · (Xn − µ)√
Var(X)

d−→ N (0, 1).

Thus, here the speed of convergence {en} can be taken as en = 1√
n

. This central limit theorem will in fact be the basis for
understanding the convergence rate of many other estimators. In particular, if our estimator W (X1, . . . , Xn) is a function of Xn,
then we will be able to directly deduce a CLT-like statement of convergence for {Wn}.

Theorem 3.1 (delta method)

Let Yn be a sequence of random variables that satisfies √
n(Yn − θ)

d−→ N (0, σ2). For a given function g and a specific value
of θ, suppose that g′(θ) exists and is not 0. Then

√
n(g(Yn)− g(θ))

d−→ N (0, σ2(g′(θ))2)

Proof. (idea) Taylor expanding g(Yn) about Yn = θ gives us

g(Yn) = g(θ) + g′(θ) · (Yn − θ) + remainder.

where the remainder goes to 0 quickly as Yn → θ. In other words,
√
n · (g(Yn)− g(θ)) ≈ g′(θ) ·

√
n(Yn − θ),

from which the result follows from the hypothesis √
n(Yn − θ)

d−→ N (0, σ2) and Slutsky’s theorem. ■
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Example 3.2
We can estimate the inverse-mean 1/E[X] =: 1/µ by 1/Xn. Then, by the delta method, for µ ̸= 0, we have

√
n

(
1

Xn

− 1

µ

)
d−→ N

(
0,

(
1

µ

)4

Var(X)

)

This may not be such a useful limiting distribution if Var(X) is unknown. However, provided the sample variance S2
n is

consistent for Var(X), Slutsky’s theorem tells us that we can simply substitute S2
n for Var(X):

√
n
(

1
Xn

− 1
µ

)
Sn

d−→ N (0, (1/µ)4).

We might also want to determine a limiting distribution which is free of µ since µ is an unknown parameter here. This is the
case, for example, when forming an asymptotic confidence interval for our parameter. However, we know by consistency of
Xn

d−→ µ and the continuous mapping theorem (cf. review session 5), that 1/X4

n
d−→ 1/µ4. Thus,

√
n
(

1
Xn

− 1
µ

)
(

1
Xn

)2
· Sn

d−→ N (0, 1)

The above example only worked provided µ ̸= 0. What if µ = 0, or in general g′(θ) = 0 in the delta method statement? Then, we
can use a higher order Taylor expansion of 1/Xn and follow the same principle. This is the motivation for the second-order
delta method.

Theorem 3.3 (second-order delta method)

Let Yn be a sequence of random variables that satisfies √
n(Yn − θ)

d−→ N (0, σ2). For a given function g and a specific value
of θ, suppose that g′(θ) = 0 and g′′(θ) exists and is not 0. Then

n(g(Yn)− g(θ))
d−→ σ2 g

′′(θ)

2
χ2
1

Proof. (idea) A second-order Taylor expansion of g(Yn) gives

g(Yn) = g(θ) + g′(θ) · (Yn − θ) +
g′′(θ)

2
· (Yn − θ)2 + remainder.

Acknowledging that g′(θ) = 0 and rearranging this gives us

g(Yn)− g(θ) ≈ g′′(θ)

2
· (Yn − θ)2.

From this, we have that since the square of a standard-normal N (0, 1) is a χ2
1 random variable:

n(Yn − θ)2

σ2

d−→ χ2
1.

This gives us the desired convergence. ■

Often, we are interested in several parameters or a vector parameter θ ∈ Rp. Multivariate CLT and the multivariate Taylor
expansion then give us the multivariate analogue of the delta method.
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Theorem 3.4 (multivariate delta method)
If g : Rk → Rℓ has Jacobian ∇g(a) for a ∈ Rp and the sequence of random vectors {Xi}∞i=1 ⊆ Rk satisfies for some b > 0:

nb(Xn − a) d−→ Y,

for some random vector Y ∈ Rk, then
nb(g(Xn)− g(a)) d−→ (∇g(a))T Y.

This version of the multivariate delta method is stated in a very general form, but (using multivariate CLT for our theorem
hypothesis) Y would typically be a multivariate Gaussian, b would be 1/2, and Xn would be (X1,n, . . . , Xk,n), i.e. the vector
of sample means of the components of a multivariate random sample.

Corollary 3.5 (multivariate delta method for univariate function of mean)
Let X1, . . . ,Xn ∈ Rp be a random sample with E[Xij ] = µi and Cov(Xik,Xjk) = σij . For a given function g : Rp → R with
continuous first partial derivatives and µµµ = (µ1, . . . , µp), letting

τ2 =
∑
i

∑
j

σij ·
∂g(µµµ)

∂µi
· ∂g(µ

µµ)

∂µj
> 0,

we have √
n(g(X1,n, . . . , Xp,n)− g(µ1, . . . , µp))

d−→ N (0, τ2).

This just follows from the previous theorem since, by Cramér-Wold, the univariate projection of a multivariate Gaussian
(i.e., that given by multivariate CLT for the limit of √n((X1,n, . . . , Xp,n)−µµµ)) is a univariate Gaussian.

4 Consistency and Asymptotic Normality of the MLE

We’ve seen that the MLE for a population mean µ = E[X] is often the sample mean Xn. The central limit theorem gives us an
“asymptotic normality” statement for this estimator. In the previous section, we’ve seen that the MLE for various functions of the
mean g(µ) also obey asymptotic normality by the delta method and by the functional invariance of the MLE.
It turns out the consistency and asymptotic normality of the MLE hold under much broader conditions. The exact conditions
required are not so important to know, as pretty much all exam problems will involve an MLE situation which abides by these
conditions. However, we’ll give a brief sketch of why certain conditions are required.

Theorem 4.1 (consistency of the MLE)

Let X1, . . . , Xn
i.i.d.∼ f(x|θ). Suppose the following regularity conditions hold:

(i) Θ, the parameter space, is compact.

(ii) log f(x|θ) is continuous.

(iii) There exists k(X), EX∼f(x|θ)[k(X)] <∞ such that | log f(x|θ)| ≤ k(x) for almost every x and all θ ∈ Θ.

(iv) ∀ϵ > 0, sup∥θ−θ0∥>ϵ EX∼f(x|θ0)[log f(X|θ)] < EX∼f(x|θ0)[log f(X|θ0)].

Then, θ̂MLE
d−→ θ0.

Proof. (idea) Recall that L(θ|xn) :=
∏n

i=1 f(xi|θ) is the likelihood function. The basic idea here is to then show that 1
n logL(θ̂MLE|x)

converges to EX∼f(x|θ0)[log(f(X|θ)]. This looks very similar to the law of large numbers, except the value of θ̂MLE is random and
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changes with n. We resolve this by asserting a uniform law of large numbers

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

log(f(X|θ))− EX∼f(x|θ0)[log(f(X|θ))]

∣∣∣∣∣ d−→ 0.

This requires conditions (i)–(iii). The intuition here is that if Θ is finite |Θ| <∞, then this uniform law of large numbers naturally
follows from a union bound plus the usual law of large numbers. Θ being compact means we can approximate it with a finite
covering by Euclidean balls, so we should hopefully be able to make a similar argument. For this, we need the value of log f(x|θ)
to not vary too much with θ inside of each ball, which is ensured by continuity (ii). To further ensure that EX∼f(x|θ0)[log(f(X|θ))]
does not vary too much with θ inside of each ball, we need to be able to exchange limits and integrals, for which (iii) is a standard
assumption.

Then, this gives us 1
n logL(θ|x) d−→ EX∼f(x|θ0)[log(f(X|θ))] for all θ ∈ Θ. Intuitively, this should imply that the maximizer of

1
n logL(θ|x) over θ should converge to the maximizer of EX∼f(x|θ0)[log(f(X|θ))], which will correspond to our desired statement
θ̂MLE

d−→ θ0. However, this is only assuming that θ = θ0 maximizes the function G(θ) := EX∼f(x|θ0)[log f(X|θ)]. Condition (iv)
essentially ensures this is the case by mandating that G(θ) < G(θ0) for θ far away from θ0. ■

Like the estimators seen in the previous section, the MLE also has asymptotic normality, with a limiting variance given by the
Cramér-Rao lower bound (cf. review doc 6).

Theorem 4.2 (asymptotic normality of the MLE, also called Cramer’s theorem)

Let X1, . . . , Xn
i.i.d.∼ f(x|θ). Under several regularity conditions in addition to (i)–(iv) from Theorem 4.1, we have

√
n(θ̂MLE − θ)

d−→ N (0, I(θ)−1),

where I(θ) := EX∼f(x|θ)[− ∂2

∂θ2 log f(X|θ)] is the Fisher information for θ, so that the variance above I(θ)−1 is the Cramér-Rao
lower bound.

Proof. (idea) Consider the log-likelihood function ℓ(θ|xn) :=
∑n

i=1 log(f(xi|θ)). Next, similar to the delta method, we will consider
a Taylor expansion of the first-derivative ℓ′(θ|xn) =

∂
∂θ ℓ(θ|xn), about the true parameter value θ = θ0:

ℓ′(θ|xn) = ℓ′(θ0|x) + (θ − θ0) · ℓ′′(θ0|xn) + remainder.

Letting θ = θ̂MLE in the above, we see that the LHS is zero by the definition of the MLE. Ignoring the remainder, we then have

√
n(θ̂MLE − θ0) ≈

√
n · −ℓ

′(θ0|xn)

ℓ′′(θ0|xn)
=

− 1√
n
ℓ′(θ0|xn)

1
nℓ

′′(θ0|xn)
.

In the above RHS, the denominator 1
nℓ

′′(θ0|xn) will go to its mean EX∼f(x|θ0)[ℓ
′′(θ0|X)] by the law of large numbers. Meanwhile,

the numerator can be re-written as

− 1√
n
ℓ′(θ0|xn) =

√
n

(
1

n

n∑
i=1

∂

∂θ
log(f(xi|θ0))

)
.

The random variable Wi :=
∂
∂θ log(f(Xi|θ0)) can be shown to have mean zero and variance I(θ0). Thus, by CLT

√
n

(
1

n

n∑
i=1

∂

∂θ
log(f(Xi|θ0))

)
d−→ N (0, I(θ0)).

Then, putting everything together we get √
n(θ̂MLE − θ)

d−→ N (0, I(θ)−1). The “extra regularity” conditions alluded to in the
theorem statement here are just to make sure that the remainder terms in our Taylor expansion do indeed vanish as n→ ∞. ■

We see from the above that the MLE has a nice and somewhat optimal form for its asymptotic variance. We call this asymptotic
efficiency, which we formalize as follows:
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Definition 4.3 (asymptotic variance and asymptotic efficiency). For a sequence of estimators {Wn}∞n=1, suppose that Wn−θ
en

d−→
N (0, σ2) for some real sequence {en}∞n=1. The parameter σ2 is called the asymptotic variance, or limiting variance, of {Wn}∞n=1.

We say a sequence of estimators {Wn}∞n=1 is asymptotically efficient for a parameter θ if √n · (Wn − θ)
d−→ N (0, I(θ)−1). That is, if

the asymptotic variance of Wn achieves the Cramér-Rao lower bound.

Note here that the scaling {en}∞n=1 or 1/√n is important. The asymptotic variance is not the limit of the variances of Wn, which
will in general go to 0 even just to ensure consistency, as we saw earlier.

5 Asymptotics of the Likelihood Ratio Test

The asymptotics of the MLE also reveal how the likelihood ratio test statistic (LRT) behaves for large samples. Recall the LRT λ(x)
is

λ(x) :=
supθ∈Θ0

L(θ|x)
supθ∈Θ L(θ|x)

,

where Θ0 is the parameter set corresponding to our null hypothesis H0.

Theorem 5.1 (asymptotics of the LRT)

For testing H0 : θ = θ0 vs. H1 : θ ̸= θ0, suppose X1, . . . , Xn
i.i.d.∼ f(x|θ), and that f(x|θ) satisfies all necessary regularity

conditions for the asymptotic normality of the MLE. Then, under H0

−2 log λ(X1, . . . , Xn)
d−→ χ2

1,

where χ2
1 is a χ2 random variable with 1 degree of freedom.

Proof. (idea) Again, let ℓ(θ|x) = logL(θ|x) be the log-likelihood and consider its Taylor expansion about θ̂MLE:

ℓ(θ|x) = ℓ(θ̂MLE|x) + ℓ′(θ̂MLE|x) · (θ − θ̂MLE) + ℓ′′(θ̂MLE|x) ·
(θ − θ̂MLE)

2

2
+ · · · .

For the simple null hypothesis H0 : θ = θ0, the LRT will be

λ(x) = L(θ0|x)
L(θ̂MLE|x)

.

Thus,
−2 log λ(x) = −2ℓ(θ0|x) + 2ℓ(θ̂MLE|x) ≈ ℓ′′(θ̂MLE|x) · (θ0 − θ̂MLE)

2 = −ℓ′′(θ̂MLE|x)/n · (
√
n(θ0 − θ̂MLE))

2.

(
√
n(θ0 − θ̂MLE)

2) goes to I(θ0)−1 times a χ2
1 random variable by the asymptotic normality of the MLE. Meanwhile, −ℓ′′(θ̂MLE|x)/n

goes to I(θ0) by the consistency of the MLE and a law of large numbers-like argument. Thus, by Slutsky, the above RHS goes to
χ2
1 in distribution. ■

Recall that the likelihood ratio test rejects H0 : θ ∈ Θ0 for small values of λ(x). To ensure that the test is level α, we need to
choose a rejection threshold c such that

sup
θ∈Θ0

Pθ(λ(X) ≤ c) ≤ α.

This can be difficult to do in general if the distribution of λ(X) is complicated. A decent proxy is to find the critical values c of the
asymptotic distribution of λ(X). Our theorem gives us a nice and simple, parameter-free distribution, the χ2

1, whose critical
values we understand well.
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Example 5.2 (Poisson LRT)

Suppose we wish to test H0 : λ = λ0 vs. H1 : λ ̸= λ0 based on observing X1, . . . , Xn
i.i.d.∼ Poisson(λ). The MLE in this case is

λ̂ := Xn. Then,

−2 log λ(X1, . . . , Xn) = −2 log

(
e−nλ0λ

∑
i Xi

0

e−nλ̂λ̂
∑

i Xi

)
= 2n

(
(λ0 − λ̂)− λ̂ log(λ0/λ̂)

)
.

Now, since −2 log λ(X1, . . . , Xn) ≈ χ2
1. We can determine an approximate critical value (that of the χ2) by rejecting H0 at

level α if −2 log λ(X1, . . . , Xn) > χ2
1,α.

6 Approximate Confidence Intervals

We’ve seen several examples thus far of two sequences of estimators {Wn}∞n=1, {Vn}∞n=1 satisfying
Wn − θ

Vn

d−→ N (0, 1).

Here, Wn could be an estimator for θ and Vn could be the sample-analogue of Var(Wn), with the right scaling. Similar to the
previous section, this also gives us a way of forming approximate confidence intervals for θ. In particular, if we conflate Wn−θ

Vn

and its limit (which is often justifiable for large samples), then we can say

Wn − zα/2 · Vn ≤ θ ≤Wn + zα/2 · Vn.

Thus, we obtain an approximate confidence interval with lower and upper bounds in terms of our sample and free of the
parameter θ.

Example 6.1 (approximate C.I. from CLT)
If X1, . . . , Xn are i.i.d. with mean µ and variance σ2, then CLT gives us

Xn − µ

σ/
√
n

d−→ N (0, 1).

Moreover, thanks to Slutsky’s theorem, we can substitute σ2 for the sample variance S2
n giving

Xn − µ

Sn/
√
n

d−→ N (0, 1).

This gives us the approximate 1− α confidence interval

Xn − zα/2 · Sn/
√
n ≤ µ ≤ Xn + zα/2 · Sn/

√
n.

Approximate C.I.’s for the MLE can be derived in the same manner using the asymptotic normality result from earlier. In general,
if X1, . . . , Xn

i.i.d.∼ f(x|θ), then we have that the variance of θ̂MLE is approximated by

V̂ar(θ̂MLE) :=
1

− ∂2

∂θ2 logL(θ|X1, . . . , Xn)|θ=θ̂MLE

.

Note that the above is the sample-based analogue of the variance term from Cramer’s theorem 1
I(θ) . Thus, by a law of large

numbers-like argument, we should have V̂ar(θ̂MLE) · n→ I(θ)−1 as n→ ∞. Then, Cramer’s theorem gives us that

θ̂MLE − θ√
V̂ar(θ̂MLE)

d−→ N (0, 1).

This gives us approximate 1− α C.I.

θ̂MLE − zα/2

√
V̂ar(θ̂MLE) ≤ θ ≤ θ̂MLE + zα/2 ·

√
V̂ar(θ̂MLE).
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Note that it was necessary for us to approximate the asymptotic variance I(θ)−1 with a sample-based analogue free of θ since
we want to easily isolate θ in forming the confidence interval bounds.
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7 Problems

7.1 Previous Core Competency Problems

Problem 1 (2018 Summer Practice, # 2). Suppose that X1, . . . , Xn are i.i.d. exp(1/µ), where E(X1) = µ > 0.

(i) Find the mean and variance of Xn =
∑n

i=1Xi/n. Hence, find the asymptotic distribution of Xn (properly standardized).

(ii) Let T = logXn. Find the corresponding asymptotic distribution of T (properly standardized).

(iii) How can the asymptotic distribution of T be used to construct an approximate (1−α) confidence interval (CI) for µ? Explain
your answer and give the desired CI.

Problem 2 (2018 Summer Practice, # 5). Suppose that Y1, . . . , Yn are i.i.d Poisson(λ), λ > 0 unknown. Assume that n is even, i.e.,
n = 2k for some integer k. Consider

λ̂ =
1

2k

k∑
i=1

(Y2i − Y2i−1)
2.

(a) Is λ̂ an unbiased estimator of λ (show your steps)?

(b) Is λ̂ a consistent estimator of λ, as k → ∞ (show your steps)?

Problem 3 (2018 September, # 6). Suppose that X1, X2, . . . , Xn are i.i.d. N(θ, 1), where θ ∈ R is unknown. Let ψ = Pθ(X1 > 0).

(a) Find the maximum likelihood estimator ψ̂ of ψ.

(b) Find an approximate 95% confidence interval for ψ.

(c) Let Yi = 111{Xi > 0}, for i = 1, . . . , n. Define ψ̃ = (1/n)
∑n

i=1 Yi. Show that ψ̃ is a consistent estimator of ψ.

(d) Find the asymptotic distribution of both the estimators. Which estimator of ψ, ψ̂ or ψ̃, is more preferable in this model and
why?

Problem 4 (2019 May, # 3). n1 people are given treatment 1 and n2 people are given treatment 2. Let X1 be the number of
people on treatment 1 who respond favorably to the treatment and let X2 be the number of people on treatment 2 who respond
favorably. Assume that X1 ∼ Binomial(n1, p1), and X2 ∼ Binomial(n2, p2). Let ψ = p1 − p2.

(i) Find the maximum likelihood estimator ψ̂ of ψ.

(ii) Find the Fisher information matrix I(p1, p2).

(iii) Use the delta method to find the asymptotic standard error of ψ̂.

Problem 5 (2019 May, # 6). Denote by ζ̂n the MLE of ζ = p(1− p) based on n i.i.d. samples from Binomial(1, p). Denote by p0 the
true value of p.

(a) If p0 ̸= 1/2, find the limiting (non-degenerate) distribution of ζ̂n, with proper normalization.

(b) Derive the asymptotic distribution of ζ̂n, when p0 = 1/2.

Problem 6 (2019 September, # 3). Suppose that Xn and Yn are independent random variables, where Xn is asymptotically
normal with mean 4 and standard deviation 1/

√
n (i.e., √n(Xn − 4)

d−→ N(0, 1)) and Yn is asymptotically normal with mean 3 and
standard deviation 2/

√
n. Use the delta method to get an approximate mean and standard deviation of Yn/Xn.

Problem 7 (2019 September, # 5). Let X1, . . . , Xn be the number of accidents at an important intersection in the past n years.
We are interested in estimating the probability of zero accidents next year. We model the Xi’s as independent random variables
distributed according to a Poisson distribution with mean λ.

(i) Let q(λ) be the probability that there will be no accidents next year. Find an unbiased and consistent estimator of q(λ).
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(ii) Compute the maximum likelihood estimator of q(λ) and derive its asymptotic distribution. Compare this estimator with
the one obtained in (i).

Problem 8 (2020 May, # 8). Let X1, . . . , Xn be i.i.d. Bernoulli(p) random sample, i.e. P (Xi = 1) = 1− P (Xi = 0) = p, p ∈ (0, 1).
Further, let θ = Var(Xi).

(i) Find θ̂, the maximum likelihood estimator of θ.

(ii) Show that θ̂ is asymptotically normal when p ̸= 1/2 and give the asymptotic variance.

(iii) When p = 1/2, derive a non-degenerated asymptotic distribution of θ̂ with an appropriate normalization. Hint: try relating θ̂
to the statistic (Xn − 1/2)2.

Problem 9 (2020 May, # 9). Let X1, . . . , X2n be an i.i.d. random sample with common pdf f(x) = 1
λe

− 1
λx for x > 0. Consider the

three estimators λ̂1 = 1
n

∑n
i=1Xi, λ̂2 = 1

n

∑2n
i=n+1Xi, and λ̂ = 1

2n

∑2n
i=1Xi.

(i) Show that T1 = λ̂1λ̂2 is an unbiased and consistent estimator of λ2.

(ii) Show that T2 = λ̂2 is consistent for λ2, but not unbiased.

(iii) Derive the asymptotic distribution of the estimators T1 and T2. Which one is more efficient asymptotically?

Problem 10 (2020 September, # 6). Suppose (X1, . . . , Xn) are i.i.d. from a Normal distribution with EXi = Var(Xi) = θ, where
θ > 0 is unknown.

(a) Find the MLE for θ explicitly.

(b) Find the asymptotic distribution of your MLE.

Problem 11 (2021 May, # 3). A random sample X1, . . . , Xn is drawn from a population with p.d.f.

fθ(x) =
1

2
(1 + θx), x ∈ [−1, 1],

and fθ(x) = 0 if x ̸∈ [−1, 1], where θ ∈ [−1, 1] is the unknown parameter.

1. Find an unbiased estimator of θ.

2. Is the estimator in (i) consistent? Provide a justification for your answer.

Problem 12 (2021 May, # 5). Let X and Y be a pair of random variables with the following distributional specification. P (Y =
1) = 1− P (Y = 0) = α where α ∈ (0, 1) and X|Y = 0 ∼ N(0, σ2) and X|Y = 1 ∼ N(µ, σ2).

1. Find the conditional distribution of Y given X, i.e. P (Y = 1|X = x).

2. Suppose that we have an i.i.d. random sample from this population, i.e. we observe i.i.d. copies (Xi, Yi), i = 1, . . . , n. Write
down the likelihood function and find maximum likelihood estimators α̂n, µ̂n and σ̂2

n of α, µ, and σ2.

3. What are the asymptotic distributions of α̂n, µ̂n, and σ̂2
n (properly standardized)?

Problem 13 (2021 May, # 6). Suppose X1, . . . , Xn are independent, with Xi ∼ N
(
θ
i , 1
)
. Here, θ ∈ R is an unknown parameter.

(i) Find an unbiased estimator θ̂n for θ which depends on the entire data.

(ii) Find asymptotic non-degenerate distribution of your estimator, i.e. dn(θ̂n − θ) converges to a non-degenerate distribution.

(iii) Suppose that we impose a normal prior θ ∼ N(0, τ), where τ > 0 is an known constant. Find the posterior distribution of θ
given data X1, . . . , Xn.

Problem 14 (2021 September, # 4). Suppose {Ui}i≥1
i.i.d.∼ U(0, θ), for some θ > 0.

1. Show that Tn := (
∏n

i=1 Ui)
1/n converges in probability to a constant, and find this constant.

2. Find a function of Tn that is a consistent estimator for θ.

3. Find constants an and bn such that an(Tn − bn) converges to a non-degenerate distribution.
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