
Review Session 1 – Solutions

1 Solutions

1.1 Previous Core Competency Problems

Problem 1 (2018 Summer Practice Problems, # 18). Suppose Σ is a nonnegative definite matrix of n× n with real entries and
real eigenvalues. Show that Tr(Σ2) ≥ n · det(Σ)2/n.

Solution
Let {λi}ni=1 be the eigenvalues of Σ. First, we claim that the eigenvalues of Σ2 are {λ2

i }ni=1. This follows from the fact
that Σv = λv =⇒ Σ2v = λΣv = λ2v. Furthermore, the algebraic multiplicity of eigenvalue of λ2 of Σ2 is the algebraic
multiplicity of eigenvalue λ of Σ, as can be seen from the factorization

det(Σ2 − λ2 Id) = det(Σ− λ Id) det(Σ + λ Id).

Thus, the eigenvalues of Σ2 is precisely the set {λ2
i }ni=1. Then, since Tr(·) (resp., det(·)) sums (resp., multiplies) the

eigenvalues, weighted by their algebraic multiplicies, we have

Tr(Σ2) ≥ ndet(Σ)2/n ⇐⇒
n∑

i=1

λ2
i ≥ n n

√√√√ n∏
i=1

λ2
i ⇐⇒ 1

n

n∑
i=1

λ2
i ≥ n

√√√√ n∏
i=1

λ2
i .

However, this last inequality is just the AM-GM inequality.

Remark. We must assume Σ has real eigenvalues. As a counterexample, Σ =

(
2 1
−3 1

)
is verifiably positive-definite, but has

complex eigenvalues. Then, Σ2 =

(
1 3
−9 −2

)
. Yet, Tr(Σ2) = −1 and det(Σ) = 5 meaning the desired inequality is not true.

However, a more general bound on the determinant still holds, called Hadamard’s inequality.

Problem 2 (2020 September Exam, # 8). For every n ≥ 1, let An be an n× n symmetric matrix with non negative entries. Let
Rn(i) :=

∑n
j=1 An(i, j) denote the ith row/column sum of An. Assume that

lim
n→∞

max
1≤i≤n

|Rn(i)− 1| = 0.

Let λn ≥ 0 denote an eigenvalue with the largest absolute value, and let x := (x1, . . . , xn) denote its corresponding eigenvector.

(a) Show that 1
n

∑n
i,j=1 An(i, j) → 1.

(b) Show that λn|xi| ≤ max1≤j≤n |xj |Rn(i).

(c) Using parts (a) and (b), show that λn → 1.

Solution

(a) ∣∣∣∣∣∣ 1n
n∑

i,j=1

An(i, j)− 1

∣∣∣∣∣∣ =
∣∣∣∣∣ 1n

n∑
i=1

Rn(i)− 1

∣∣∣∣∣ ≤ max
1≤i≤n

|Rn(i)− 1| → 0.
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(b) λx = Anx gives us λnxi =
∑n

j=1 An(i, j)xj for all i ∈ [n]. Then,

λn|xi| ≤
n∑

j=1

An(i, j)|xj | ≤ max
1≤j≤n

|xj | ·Rn(i).

(c) Using the fact that λn = sup
y:∥y∥2=1

yTAny, we have from part (a):

λn = sup
y:∥y∥2=1

n∑
i,j=1

An(i, j)yiyj ≥
1

n

∑
i,j

An(i, j) → 1.

On the other hand, by part (b):
λn ≤ max

1≤j≤n
Rn(j) → 1.

Thus, combining these two estimates, λn → 1.

Problem 3 (2021 May Exam, # 7). Suppose that A = (aij)1≤i,j≤2 is a 2× 2 symmetric matrix, with a11 = a22 = 3
4 and a12 = a21 = 1

4 .

1. Find the eigenvalues and eigenvectors of the matrix A.

2. Compute limn→+∞ a
(n)
12 , where a

(n)
ij denotes the (i, j)’s entry of matrix An.

Solution

1. We have
det(λ Id−A) = 0 ⇐⇒ (λ− 3/4)2 − 1/16 = 0 ⇐⇒ 2λ2 − 3λ+ 1 ⇐⇒ λ = 1, 1/2.

2. The eigenspace of eigenvalue λ = 1 is spanned by (1, 1) and the eigenspace of eigenvalue λ = 1/2 is spanned by
(1,−1). Thus, A has eigendecomposition

A = QTDQ :=

(
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

)(
1 0
0 1/2

)(
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

)
.

Thus,
An = QTDnQ = QT

(
1 0
0 1/2n

)
Q.

Using this, we see a
(n)
12 = 1/2− 1/2n+1 n→∞−→ 1/2.

Problem 4 (2021 Sept Exam, # 6). Let A ∈ Rm×n denote an m× n matrix with n < m. Suppose that λ1, λ2, . . . , λn and v1, . . . ,vn

denote, respectively, the eigenvalues and eigenvectors of ATA. What can we say about ALL the eigenvalues and eigenvectors of
AAT ? Justify your answer.

Solution
From looking at the SVD’s of A and AT , we conclude ATA and AAT have the same eigenvalues. Furthermore, by the SVD,
the eigenvectors {ui}i of AAT are related to the eigenvectors {vi}i of ATA via the SVD relation Avi = ui

√
λi.

1.2 Additional Practice

Problem 5. Let A be a 3× 3 real-valued matrix such that ATA = AAT = Id3 and det(A) = 1. Prove that 1 is an eigenvalue of A.
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Solution
Let λ be an eigenvalue of A with eigenvector v. Write ∥v∥22 = ∥ATAv∥2 = vT (ATA)TATAv = λvT (AAT )λv = λ2∥v∥22
meaning λ2 = 1 =⇒ λ = ±1. Since the characteristic polynomial is degree 3 and the product of the eigenvalues is 1, this
implies 1 must be an eigenvalue of A.

Problem 6. Let A ∈ Rn×n be a symmetric n × n matrix such that Tr(A2) = 0. Show that T = 000n×n. Hint: use the fact that
Tr(ABC) = Tr(CAB) for matrices A,B,C.

Solution
Write the eigendecomposition A = QDQT and observe

0 = Tr(A2) = Tr(QD2QT ) = Tr(QTQD2) = Tr(D2) = λ2
1 + · · ·+ λ2

n.

This implies all λi = 0 and thus D ≡ 000×n which means T is also zero.

Problem 7. Let matrices A,B ∈ Rn×n have respective eigendecompositions Q1D1Q
T
1 and Q2D2Q

T
2 (recall this means each Di is

a diagonal matrix of eigenvalues and each Qi is an orthogonal matrix). Prove that Q1 = Q2 if and only if AB = BA. You may
assume that A,B do not have any repeated eigenvalues.

Solution
In the forward direction, if Q = Q1 = Q2, then

AB = QD1Q
TQD2Q

T = QD1D2Q
T ,

and similarly BA = QD2D1Q
T . But, diagonal matrices always commute so that D1D2 = D2D1. Thus, AB = BA.

In the other direction, if AB = BA, then let v, λ be an eigenvector, eigenvalue pair of A, i.e. Av = λv. Then,

ABv = BAv = Bλv = λBv.

This implies both v and Bv are eigenvectors of A. Since the eigenspace of λ is one-dimensional (because A has no
repeated eigenvectors), this means v ∝ Bv so that v is an eigenvector of B. Then, we conclude A and B have the same
eigenvectors which means Q1 = Q2.

Problem 8. Let A = uvT ∈ Rn×n be a rank-one matrix, i.e. u, v ∈ Rn. Suppose u, v ̸= 000n. Find, with proof, all the eigenvalues of A.

Solution
We claim 0 and vTu are the only eigenvalues of A. 0 is an eigenvalue since A is not full rank. vTu is an eigenvalue since

Au = u(vTu) = (vTu) · u.

Furthermore, we claim the geometric multiplicity of the eigenvalue 0 is n−1 and hence there can be no other eigenvalues.
This is true since any vector v′ in the orthogonal complement of v satisfies Av′ = uvT v′ = u(vT v′) = 000n. Since this
orthogonal complement Span(v)⊥ has dimension n− 1 the eigenspace of eigenvalue 0 has dimension n− 1 and so our
claim is proven.

Problem 9 (Heisenberg uncertainty principle). Suppose A,B ∈ Rn×n are symmetric matrices satisfying AB +BA = Idn. Show
that for all vectors v ∈ Rn\{000n},

max

{
∥Av∥2
∥v∥2

,
∥Bv∥2
∥v∥2

}
≥ 1/

√
2.
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Solution
Write vT v = vT Idn v = vTABv + vTBAv ≤ 2|(vTA) · (Bv)| ≤ 2∥Av∥2∥Bv∥2 by Cauchy-Schwarz. Thus,

∥v∥22 ≤ 2∥Av∥2∥Bv∥2,

meaning one of ∥Av∥2/∥v∥2 or ∥Bv∥2/∥v∥2 is larger than 1/
√
2.

Problem 10. Let A = (ai,j) be a n× n real matrix whose diagonal entries ai,i satisfy ai,i ≥ 1 for all i ∈ 1, . . . , n. Suppose also that∑
i ̸=j

a2i,j < 1.

Prove that the inverse matrix A−1 exists.

Solution
For contradiction, suppose A−1 does not exist which mean A has a non-trivial kernel, i.e. ∃v ∈ Rn\{000n} such that Av = 0.
WLOG, let ∥v∥2 = 1. Then, Av = 0 implies

∀i ∈ [n] : aii · vi +
∑
j:j ̸=i

aij · vj = 0 =⇒ aii · vi = −
∑
j:j ̸=i

aij · vj .

Thus, squaring both sides and summing over i ∈ [n], we obtain

n∑
i=1

a2iiv
2
i =

n∑
i=1

∑
j:j ̸=i

aij · vj

2

.

By Cauchy-Schwarz the RHS is at most

n∑
i=1

∑
j:j ̸=i

a2ij

 ∥v∥22 =
∑

i,j:i ̸=j

a2ij < 1.

On the other hand,
∑n

i=1 a
2
iiv

2
i ≥

∑n
i=1 v

2
i = ∥v∥22 = 1, which is a contradiction to the above.

Problem 11 (Greshgorin circle theorem). Let A ∈ Cn×n with entries aij . For i ∈ {1, . . . , n} let Ri be the sum of the absolute
values of the non-diagonal entries in the i-th row:

Ri :=
∑
j ̸=i

|aij |.

Let D(aii, Ri) ⊆ C be a closed disc centered at aii with radius Ri, called a Gershgorin disc. Show that every eigenvalue of A lies
within at least one of the Gershgorin discs.

Solution
Let λ, v be an eigenvalue/eigenvector pair of A. Suppose vi has the largest modulus among {v1, . . . , vn}, the entries of v,
or |vi| = maxj |vj | ≠ 0. Then, let u = v/vi. Then, each uj has modulus |uj | = |vj |

|vi| ≤ 1 while ui = 1. Now, u of course is a
valid eigenvector of v: Au = λu. In particular, looking at the i-th row, we have∑

j

aijuj = λui = λ.

Splitting this sum gives us

∑
j ̸=i

aijuj + aii = λ =⇒ |λ− aii| =

∣∣∣∣∣∣
∑
j ̸=i

aijuj

∣∣∣∣∣∣ ≤
∑
j ̸=i

|aij ||uj | ≤
∑
j ̸=i

|aij | = Ri,

where we use the fact that |uj | ≤ 1 for j ̸= i.
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Problem 12. Let A =

 1 0 0
1/2 1/2 0
1/3 1/3 1/3

. Find limn→∞ An. Hint: the eigenvalues of a lower triangular matrix are its diagonal

entries.

Solution
The eigenvalues of A are 1, 1/2, 1/3 as can be seen from the fact that det(A− λI) = (λ− 1)(λ− 1/2)(λ− 1/3). Then, via
direct computation, the eigenspace of eigenvalue 1 is spanned by (1, 1, 1), that of eigenvalue 1/2 spanned by (0, 1, 2), and
that of eigenvalue 1/3 spanned by (0, 0, 1). Then, letting

P =

1 0 0
1 1 0
1 2 1

 ,

we have that AP = PD where D = diag(1, 1/2, 1/3). In fact, P is invertible since it has non-zero determinant so that
A = PDP−1. Then,

An = PDnP−1 = P

1 0 0
0 1/2n 0
0 0 1/3n

P−1.

As n → ∞, the middle matrix above goes to a matrix with just (1, 1)-entry 1 and all other entries 0. Let p−1
11 be the (1, 1)-th

entry of P−1. Then the above RHS in the limit is

P

p−1
11 0 0
0 0 0
0 0 0

 =

p−1
11 0 0

p−1
11 0 0

p−1
11 0 0

 .

However, we can compute p−1
11 without computing the entire inverse P−1 since we know PP−1 = Id3×3 means that p−1

11 = 1.
Thus

lim
n

An =

1 0 0
1 0 0
1 0 0

 .

Problem 13. Let A,B be n× n matrices. Show that BA and AB have the same eigenvalues if A is invertible

Solution
The characteristic polynomial of AB is

det(AB − λ Id) = det(A−1A(AB − λ Id)) = det(A−1(AB − λ Id)A) = det(BA− λ Id).

Thus, AB and BA have the same characteristic polynomial meaning they have the same eigenvalues.

Problem 14. Let A = (aij) be a 2× 2 real matrix such that

a211 + a212 + a221 + a222 <
1

1000
.

Prove that Id2×2 +A is invertible.

Solution
For contradiction, suppose otherwise meaning Id+A has a non-trivial kernel, i.e. (Id+A)v = 0 for some v ∈ R2\{(0, 0)}.
Then, this means

v1 + a11v1 + a21v2 = 0

v2 + a12v1 + a22v2 = 0.
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Thus,
∥v∥22 = (a11v1 + a21v2)

2 + (a12v1 + a22v2)
2 ≤ ∥v∥22

(
a211 + a212 + a221 + a222

)
≤ 1

1000
∥v∥22.

This is only possible if ∥v∥2 = 0 meaning v = (0, 0), a contradiction.

Problem 15. Let A ∈ Rn×n be a real symmetric n× n matrix and let λ1 ≥ · · · ≥ λn be its eigenvalues in decreasing order. Show
that

λk ≤ max
U :dim(U)=k

min
x∈U :∥x∥2=1

⟨Ax, x⟩.

The maximum above is over all k-dimensional subspaces U of Rn. Hint: form an orthonormal basis of eigenvectors to make U .

Solution
Choose orthonormal eigenvectors v1, . . . , vk corresponding to λ1, . . . , λk (they can be orthonormalized by Gram-Schmidt).
Then, let U = Span(v1) ⊕ · · · ⊕ Span(vk). Then, for any x ∈ U , we can represent x =

∑k
k=1 αivi for coordinates αi ∈ R.

Suppose ∥x∥2 = 1. Then,

⟨Ax, x⟩ =

〈
k∑

i=1

αiviλi,

k∑
i=1

αivi

〉
=

k∑
i=1

α2
iλi ≥

k∑
i=1

α2
iλk = λk,

where the last equality follows from
∑k

i=1 α
2
i = ∥x∥2 = 1.

Problem 16. For a vector v ∈ Rn\{000n}, define the map F : Rn → Rn via F (x) = argmin
z∈Span(v)

∥z − x∥2. Compute F explicitly in terms

of v. Is F : Rn → Rn a linear transformation?

Solution
In the minimization, we can instead optimize ∥cv − x∥22 over c ∈ R. Expanding the square we have

∥cv − x∥22 = c2vT v − 2cvTx+ xTx.

This is a convex quadratic in c. Thus, taking derivative w.r.t. c and setting equal to 0, we find the minimizer is c = vT x
vT v

.
Thus, F (x) = vvT

vT v
· x. This is a linear transformation since it’s just a matrix times x.

Problem 17. Suppose A ∈ Rn×n and A = AT with all eigenvalues of A being positive. Show there exists a matrix B such that
B2 = A.

Solution
By the eigendecomposition, we have A = QDQT for D a diagonal matrix of A’s positive eigenvalues λ1, . . . , λn > 0. Let
C = diag(

√
λ1, . . . ,

√
λn) and let B = QCQT . Then, B2 = QC2QT = QDQT = A.

Problem 18. Let A ∈ Rn×n and let {σi}ni=1 be the singular values of A. Show that |det(A)| =
∏n

i=1 σi.

Solution
This follows from the SVD A = UΣV T and the fact that U, V are orthogonal so that det(A) = det(U) det(Σ) det(V T ) =
±det(Σ).

Problem 19. (low-rank matrix approximation) Let A ∈ Rm×n matrix and for a positive integer p < rank(A), define Ap =∑p
i=1 σiuiv

T
i where σi is the i-th (largest) singular value of A, and ui, vi are respective left/right singular vectors, i.e. the SVD is

A = UΣV T . Then, prove that
sup

x:∥x∥2=1

∥(A−Ap)x∥2 = σp+1.
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Solution
Observe that since A =

∑n
i=1 σiuiv

T
i , we have UT (A−Ap)V = diag(0, . . . , 0, σp+1, . . .). By the orthogonal invariance of the

2-norm, we have
∥(A−Ap)x∥2 = ∥UT (A−Ap)V x∥2.

which is the top singular value of UT (A−Ap)V or σp+1.

Problem 20. Suppose P ∈ Rn×n is a symmetric matrix that satisfies P 2 = P , a so-called idempotent matrix. Find all the
eigenvalues of P with their (algebraic) multiplicities in terms of P .

Solution
Let v be an eigenvector of P that corresponds to eigenvalue λ. We have

P 2 = P =⇒ P 2v = Pv = λv.

However, P 2v = P (Pv) = P (λv) = λPv = λ2v. Thus, λ2v = λv for every eigenvector. Since v ̸= 0, this means λ2 = λ =⇒
λ ∈ {0, 1}. Now, P admits an eigendecomposition P = QΛQT . We also have since multiplication by an invertible matrix
doesn’t change rank, rank(P ) = rank(QΛQT ) = rank(Λ). However, rank(Λ), and hence rank(P ), is exactly the multiplicity
of eigenvalue λ = 1, while eigenvalue λ = 0 then has multiplicity n− rank(P ).

Problem 21. Suppose that Σ is the covariance matrix of k zero-mean random variables X1, . . . , Xk, i.e. if X = (X1, . . . , Xk) then
Σ := E[XXT ]. Prove that if Σ is singular, then X1, . . . , Xk are linearly dependent almost everywhere.

Solution
We know that Σ is singular, so it has at least one zero eigenvalue since det(Σ) = 0 is the product of the eigenvalues. Let’s
call its corresponding eigenvector q. Since Σq = 0, we have qTΣq = 0. then,

qTΣq = 0 =⇒ qTE[XXT ]q = E[qTXXT q] = E[(XT q)2] = 0.

Since (XT q)2 is a nonnegative random variable with mean zero, it must be zero almost everywhere.
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