
Review Session 5 – Solutions

1 Solutions

1.1 Previous Core Competency Problems

Problem 1 (2018 Summer Practice, # 11). Suppose that X1, . . . , Xn
i.i.d.∼ Ber(λ/n).

(a) What is the distribution of
∑n

i=1 Xi.

(b) Compute limn→∞ P(
∑n

i=1 Xi = k), where k is any fixed nonnegative integer, and hence show that
∑n

i=1 Xi converges in
distribution to a random variable Y .

(c) Compute E[Y (Y − 1)], where Y is as in part (b).

Solution

(a)
∑n

i=1 Xi ∼ Binomial(n, λ/n).

(b) We claim Y =
∑n

i=1 Xi
d−→ Poisson(λ). Indeed, we have

lim
n→∞

P

(
n∑

i=1

Xi = k

)
= lim

n→∞

n(n− 1) · · · (n− k + 1)

k!nk
· λk

(1− λ/n)k
(1− λ/n)n =

λk

k!
lim

n→∞
(1− λ/n)n =

λk

k!
e−λ.

(c) E[Y (Y − 1)] = E[Y 2]− E[Y ] = λ+ λ2 − λ = λ2.

Problem 2 (2018 Summer Practice, # 16). Farmers in the Hudson Valley pack apples into bags of approximately 10 pounds, but
due to the variation in apples the actual weight varies. We may model the weight of a bag as uniformly distributed in [9.5, 10.5]
and independent of other bags. The farmers load 1200 bags onto a truck with maximal admissible load of 13000 pounds. Find a
simple approximation to the probability that the truck is overloaded, expressed in terms of the Normal distribution.

Solution
Let Wi be the weight of the i-th bag, so that E[Wi] = 10 and Var(Wi) = 1/12. Then, by CLT:

W 1200 − 10

1/
√
12

√
1200

d−→ N (0, 1).

Thus,

P

(
1200∑
i=1

Wi > 13000

)
= P

(
W − 10

1/
√
12

√
1200 > 100

)
≈ P(N (0, 1) > 100)

Problem 3 (2018 Summer Practice, # 19). suppose for every n ≥ 1, An is a real symmetric matrix of size n×n, whose eigenvalues
(λ1, . . . , λn) satisfies the following properties:

(i) maxni=1 |λi|
n→∞→ 0.

(ii)
∑n

i=1 λ
2
i = 1.

Find the asymptotic distribution of
∑n

i,j=1 An(i, j)XiXj , where {Xi}i≥1 is a sequence of i.i.d. N (0, 1).
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Solution
By the eigendecomposition of An, it suffices to compute the limiting distribution of Sn :=

∑n
i=1 X

2
i λi. We will proceed via

Lyapunov CLT for the triangular array {Xiλi}i,n. Condition (ii) gives us that the normalization constant is
∑n

i=1 λ
2
i = 1 for

all n ∈ N. Next, we verify the third-moment condition:

lim
n

n∑
i=1

E[|X2
i λi − λi|3] = lim

n

n∑
i=1

|λi|3E[|X2 − 1|3] ≤ (max
i

|λi|) · E[|X2 − 1|3] n→∞−→ 0

Thus, by Lyapunov CLT, Sn −
∑n

i=1 λi
d−→ N (0,Var(X2)).

Problem 4 (2018 September, # 3). Suppose that, for n ≥ 1, Xn is a random variable taking values in {1/n, 2/n, . . . , n/n} with
equal probability 1/n.

(i) Show that Xn converges in distribution, as n → ∞? What is its weak limit?

(ii) Let f : [0, 1] → R be defined as f(x) = x sin(x), for x ∈ [0, 1]. Using the above or otherwise, show that

lim
n→∞

1

n

n∑
k=1

f

(
k

n

)
=

∫ 1

0

f(x) dx.

Solution

(i) We will show this by an mgf computation. We have the mgf of Xn is

n∑
k=1

1

n
· et·k/n =

 1
n

(
e
t·(n+1

n )−1
et/n−1

)
t ̸= 0

1 t = 0
.

Next, we take the limit as n → ∞. Suppose t ̸= 0. We have limn e
t·(n+1

n ) − 1 = et − 1. Next, via L’Hôpital’s rule:

lim
n

n(et/n − 1) = lim
n

et/n − 1

1/n
= lim

n

− t
n2 e

t/n

−1/n2
= lim

n
tet/n = t.

Thus, the mgf of Xn goes to (et − 1)/t for t ̸= 0 and 1 for t = 0. This is precisely the mgf of a Unif([0, 1]), whence
Xn

d−→ Unif([0, 1]).

(ii) f is a bounded, continuous function on [0, 1]. Thus, by portmanteau theorem,

lim
n

E[f(Xn)] = EX∼Unif([0,1])[f(X)]),

which is the desired result.
Remark 1.1. (ii) also follows from just the definition of the Riemann integral

∫ 1

0
f(x) dx (which of course exists for continuous

f ).

Problem 5 (2018 September, # 7). Suppose X1, . . . , Xn are i.i.d. with P(Xi = ±1) = 1
2 . Define

Yi :=

i∏
j=1

Xj , for i = 1, . . . , n.

(i) Find the joint distribution of (Y1, Y2).

(ii) Derive the limiting distribution of 1√
n

∑n
i=1 Yi.
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Solution
Working out the various cases, we see that (Y1, Y2) takes values (±1,±1) uniformly. We have each Yi is ±1 with prob-
ability 1/2 and, by induction, the {Yi}ni=1’s are mutually independent since P(Yn+1|Y1, . . . , Yn) = P(Yn+1). Thus, by CLT,
1√
n

∑n
i=1 Yi

d−→ N (0, 1).

Problem 6 (2019, May # 2). Let Z1, . . . , Zn be i.i.d. random variables with density f . Suppose that (i) P(Zi > 0) = 1, and (ii) f is
continuous on [0, ϵ), for some ϵ > 0. Let λ := f(0). Let

Xn = nmin{Z1, . . . , Zn}.

Show that Xn converges in distribution, and find the limiting distribution.

Solution
We have for c > 0:

P(Xn > c) =

n∏
i=1

P(Zi > c/n) = (1− F (c/n))n.

Next, we consider limn log((1− F (c/n)n) = limn n log(1− F (c/n)). By L’Hôpital’s rule:

lim
n

log(1− F (c/n))

1/n
= lim

x→∞

f(c/x)·c/x2

1−F (c/x)

−1/x2
= lim

x→∞

−f(c/x) · c
1− F (c/x)

.

Since f is continuous near 0, so is its antiderivative with limx→∞ F (c/x) = 0. Thus, the above RHS is equal to −f(0)·c = −λ·c,
meaning P(Xn > c) → e−λ·c. Thus, Xn

d−→ exp(λ).

Problem 7 (2019 May, # 8). Suppose you have a quadratic form XT
nAnXn, where Xn ∼ Nn (0n×1, In×n), and An is a symmetric

n× n matrix with 0 on the diagonal. Let (λ1,n, λ2,n, . . . , λn,n) denote the eigenvalues of An, and let ∥λ∥2,n :=
√∑n

i=1 λ
2
i,n denote

the ℓ2-norm of the eigenvalues.

(a) If lim
n→∞

max
i=1,...,n

|λi,n|

∥λ∥2,n
= 0, show that Tn := 1

∥λ∥2,n
XT
nAnXn

d−→ N(0, 1) as n → ∞.
[Hint: You may use Lyapunov’s1 CLT. Note that the trace of a square matrix is the sum of its eigenvalues. ]

(b) If
lim
n→∞

λ1,n

∥λ∥2,n
= 1,

show that Tn
d−→ χ2

1 − 1.

Solution

(a) By an eigendecomposition of An, we can write

1

∥λ∥2,n
XT
nAnXn

d
=

1

∥λ∥2,n

n∑
i=1

X2
i,n · λi,n.

Next, since Tr(An) = 0 =
∑n

i=1 λi,n, we have E
[

1
∥λ∥2,n

XT
nAnXn

]
= 0. Finally, for the sake of using Lyapunov’s CLT, we

last need the third moment condition which amounts to bounding:

lim
n

1

∥λ∥32,n

n∑
i=1

|λi,n|3 ≤
(
maxi |λi,n|
∥λ∥2,n

)
·
∑n

i=1 λ
2
i,n

∥λ∥22,n
n→∞−→ 0.

1Lyapunov’s CLT: Suppose that {Z1, Z2, . . .} is a sequence of independent random variables such that Zi has finite expected value µi and variance σ2
i .

Define s2n :=
∑n

i=1 σ
2
i . If limn→∞

1
s3n

∑n
i=1 E[|Zi − µi|3] = 0 is satisfied, then 1

sn

∑n
i=1(Zi − µi)

d−→ N(0, 1).
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Thus, by Lyapunov CLT Tn
d−→ N (0,Var(X2

1,1)) = N (0, 2).

(b) First, we write

Tn = X2
n,1 ·

λ1

∥λ∥2,n
+

n∑
i=2

X2
n,i · λi

∥λ∥2,n
.

The first term on the RHS goes to χ2
1 in distribution by Slutsky. It suffices to show the second term on the RHS goes

to −1. In fact, we claim this will follow from:

1

∥λ∥2,n

(
n∑

i=2

X2
n,i · λi − E[X2

n,i] · λi

)
P−→ 0. (1)

To verify (1), we have for any fixed ϵ > 0, by Chebyshev:

P

(
1

∥λ∥2,n

∣∣∣∣∣
n∑

i=2

X2
n,i · λi,n − E[X2

n,i] · λi,n

∣∣∣∣∣ ≥ ϵ

)
≤

Var
(∑n

i=2 X
2
n,i · λi,n

)
∥λ∥22,n · ϵ2

=
1

∥λ∥22,n · ϵ2
n∑

i=2

Var(X2
n,i) · λ2

i,n.

Then, it suffices to show
∑n

i=2 λ2
i,n

∥λ∥2
2,n

→ 0. But, this follows immediately from realizing

1 = lim
n

λ2
1,n

∥λ∥22,n
+

∑n
i=2 λ

2
i,n

∥λ∥22,n
= 1 + lim

n

∑n
i=2 λ

2
i,n

∥λ∥22,n
.

Finally, we have that
∑n

i=1 λi,n = 0 for all n ∈ N gives us

1

∥λ∥2,n

n∑
i=2

E[X2
n,i] · λi,n =

n∑
i=2

λi,n

∥λ∥2,n
→ −1.

Putting everything together, we conclude Tn
d−→ χ2

1 − 1.

Remark 1.2. Note that our use of Chebyshev to establish (1) can be considered a strong version of Law of Large Numbers for
triangular arrays (e.g., see Theorem 2.2.4 in Durrett’s Probability: Theory and Examples).

Problem 8 (2019 May, # 9). Let Yn =
∏n

i=1 Xi where X1, . . . , Xn are i.i.d. nonnegative non-degenerate random variables with
mean E(Xi) = 1. Prove that Yn

P−→ 0 as n → ∞ when: (i) P(X1 = 0) > 0, and (ii) P(X1 = 0) = 0.

Solution

(i) For ϵ > 0, we have
P(Yn > ϵ) ≤ P(∀i ∈ [n] : Xi > 0) = P(X1 > 0)n.

However, since P(X1 > 0) < 1, the RHS above goes to 0 as n → ∞. Thus, Yn
P−→ 0.

(ii) We may now assume WLOG that Xi > 0 everywhere. Consider the transformation X 7→ log(X). We have, by Jensen:

E[log(X1)] < logE[X1] = 0.

Thus, SLLN gives log(Yn) =
∑n

i=1 log(Xi)
a.s.−−→ −∞, meaning Yn

P−→ 0.

Problem 9 (2019 May, # 10). Let fX,Y (x, y) be a bivariate density and let (X1, Y1), . . . , (XN , YN ) be i.i.d. fX,Y . Let w(·) be an
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arbitrary probability density function. Let

f̂X(x) =
1

N

N∑
i=1

fX,Y (x, Yi)w(Xi)

fX,Y (Xi, Yi)
.

Show that, for any x ∈ R, f̂X(x)
P−→ fX(x), where fX is the marginal density of X1.

Solution
It suffices to show

EX1,Y1

[
fX,Y (x, Y1) · w(X1)

fX,Y (X1, Y1)

]
= fX(x),

whence the result will follow from LLN. Indeed, we have

EX1,Y1

[
fX,Y (x, Y1) · w(X1)

fX,Y (X1, Y1)

]
=

∫
fX,Y (x, Y1) · w(X1) d(X1, Y1)

=

∫
fX,Y (x, Y1)

∫
w(X1) dX1 dY1

=

∫
fX,Y (x, Y1) dY1

= fX(x),

where choosing the order of integration is justified by Tonelli’s theorem.

Problem 10 (2019 September, # 6). Suppose that X1, X2, . . . are i.i.d. having an exponential distribution with mean 1. Show that

max1≤k≤n Xk

log n

P−→ 1 as n → ∞

where P−→ denotes convergence in probability.

Solution
We have for ϵ ∈ (0, 1):

P

∣∣∣∣∣∣
max

1≤k≤n
Xk

log(n)
− 1

∣∣∣∣∣∣ > ϵ

 = P
(

max
1≤k≤n

Xk ≥ (1 + ϵ) log(n)

)
+ P

(
max

1≤k≤n
≤ (1− ϵ) · log(n)

)
≤ n · e−(1+ϵ) log(n) + (1− e−(1−ϵ)·log(n))n

=
n

nϵ+1
+

(
1− 1

n1−ϵ

)n

However, both of these last terms go to 0 as n → ∞ (the second limit can be computed with l’Hôpital’s rule). Thus, we’ve
shown the definition of max1≤k≤n Xk/ log(n)

P−→ 1.

Problem 11 (2020 May, # 2). Let X1, X2, . . . , Xn denote n independent and identically distributed observations from Uniform(0, 1).
We order these observations according to their distance from x = 0.75 and call the ordered ones Xx

(1), X
x
(2), . . . , X

x
(n). Note that

Xx
(1) and Xx

(n) are, respectively, the closest and farthest observations from x = 0.75.

(i) Prove that Xx
(1) converges to 0.75 in probability.

(ii) What does Xx
(n) converge to in probability? Prove your answer.
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Solution

(i)

P(|Xx
(1) − 0.75| > ϵ) =

n∏
i=1

P(|Xi − 0.75| > ϵ) =

n∏
i=1

(1− 2ϵ)
n→∞−→ 0.

(ii) We claim Xx
(n)

P−→ 0. Indeed, for ϵ < 0.75, we have Xx
(n) > ϵ =⇒ ∀i ∈ [n] : Xi > ϵ so that

P(|Xx
(n)| > ϵ) ≤

n∏
i=1

P(Xi > ϵ) = (1− ϵ)n
n→∞−→ 0

Problem 12 (2020 September, # 2). Suppose that X1, . . . , X2n are i.i.d. U [0, 1]. Let Yi = X2i−1 +X2i for 1 ≤ i ≤ n.

(a) Find the limiting distribution of Y1.

(b) Find the limiting distribution of √n(2− Y(n)) as n → ∞.

Solution

(a) Y1 has cdf

P(X1 +X2 ≤ t) =

{∫ t

0
P(X1 ≤ t− x) dx =

∫ t

0
(t− x) dx = t2/2 t ∈ [0, 1]∫ 1

t−1
P(X1 ≤ t− x) dx+

∫ t−1

0
1 dx = 2t− t2/2− 1 t ∈ [1, 2]

.

(b) For w > 0 and n large enough we have, using part (a),

P(
√
n(2− Y(n)) > w) = P

(
Y(n) < 2− w√

n

)
=

(
2

(
2− w√

n

)
− 1

2

(
2− w√

n

)2

− 1

)n

=

(
1− w2

2n

)n

.

This last expression goes to e−w2/2 as n → ∞. Thus, the limiting distribution of √n(2−Y(n)) has cdf F (w) = 1−e−w2/2

for w > 0.

Problem 13 (2021 September, # 5). Suppose {ξi}i≥0 are i.i.d. N (0, 1) random variables. Find the constant c such that

max1≤i≤n Xi√
log(n)

P−→ c,

for each of the following three cases where {Xi}i≥1 is defined.

(i) Xi = ξi for i ≥ 1.

(ii) Xi = ξi + ξ0 for i ≥ 1.

(iii) Xi =
ξi+ξi−1√

2
for i ≥ 1.
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Solution

(i) We first write the cdf of maxi ξi/
√
log(n). This is

P

(
maxi ξi√
log(n)

≤ x

)
= P(ξ0 ≤ x

√
log(n))n = Φ(x

√
log(n))n,

where Φ(·) is the standard normal cdf. First, if x ≤ 0, then we see that

lim
n

Φ(x
√

log(n))n ≤ lim
n
(1/2)n = 0.

So, it suffices to compute limn Φ(x
√
log(n))n for x > 0. We apply L’Hopital’s rule to log(Φ(x

√
log(n))n) (let ϕ(·) be the

standard normal pdf) giving:

lim
n

log(Φ(x
√

log(n)))

1/n
= lim

n

1

Φ(x
√

log(n))
· ϕ(x

√
log(n)) · x√

log(n)
·
(
1
2

)
· 1
n

−1/n2

= lim
n

− n1−x2/2

2
√

log(n)
· x

Φ(x
√
log(n))

=

{
−∞ x ∈ (0,

√
2)

0 x ≥
√
2

Thus, limn Φ(x
√
log(n)) → 111{x ≥

√
2} which is the cdf of the constant

√
2. Thus, c =

√
2 for (i).

(ii) maxi ξi+ξ0√
log(n)

= ξ0√
log(n)

+ maxi ξi√
log(n)

P−→
√
2 by (i) and the fact that ξ0/

√
log(n)

P−→ 0.

(iii) We have

P
(
max

i
Xi ≤ x

√
log(n)

)
= P

(
−max

i
Xi ≥ −x

√
log(n)

)
= P

(
min
i

Xi ≥ −x
√
log(n)

)
.

where we replace each Xi with −Xi by symmetry at the last step. Next, if mini Xi ≥ −x
√
log(n), then for each i ∈ [n],

ξi+ξi−1√
2

≥ −x
√
log(n) which means that for each i ∈ [n] either ξi ≥ −x

√
log(n)/2 or ξi−1 ≥ −x

√
log(n)/2. In particular,

this is true for every odd i ∈ [n]. Thus, we can bound the RHS probability above by:

P
(
i ∈ 1, . . . , ⌊n/2⌋ : max(ξ2i, ξ2i+1) ≥ −x

√
log(n)/2

)
≤
(
2 · P

(
N (0, 1) ≥ −x

√
log(n)/2

))⌊n/2⌋
≤ (2− 2Φ(−x

√
log(n)/2))⌊n/2⌋.

We again apply L’Hopital to find the limit of this last expression. To get rid of the annoying ⌊n/2⌋ we’ll replace the
exponent ⌊n/2⌋ with the smaller n/4 which only makes the above bound larger (and as we shall see will be suitable
for our end results). We have

lim
n

log((2− 2Φ(−x
√
log(n)/2))n/4) = lim

n

log(2− 2Φ(−x
√

log(n)/2))

4/n

= lim
n

(2− 2Φ(−x
√
log(n)/2))−1 · (−2ϕ(−x

√
log(n)/2)) ·

(
− x/

√
2√

log(n)/2

)
· 1
2n

−4/n2

∝ −n1−x2/4 · x√
log(n)

· 1

1− Φ(−x
√
log(n)/2)

.

This last expression goes to −∞ for x ∈ [0, 2) and goes to 0 for x = 2. Thus, taking exp(·), we find that

lim
n

P
(
max

i
Xi ≤ x

√
log(n)

)
≤

{
0 x ∈ [0, 2)

1 x = 2
.
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On the other hand, maxi
ξi√
2
≤ x

2

√
log(n) =⇒ maxi Xi ≤ x

√
log(n) so that

P
(
max

i
Xi ≤ x

√
log(n)

)
≥ P

(
max

i
ξi ≤ x

√
log(n)/2

)
= P

(
maxi ξi√
log(n)

≤ x/
√
2

)
n→∞−→ 111{x ≥ 2},

where the last part follows from part (i). Putting these upper and lower bounds on the cdf of maxi Xi/
√
log(n)

together, we see that maxi Xi√
2 log(n)

P−→ 2.

Problem 14 (2021 September, # 7). Let X1, X2, . . . , Xn
i.i.d.∼ F (F denotes the CDF). Our goal is to estimate γ = F (0) + 2F (1). We

employ the following estimate

γ̂ =
1

n

(
n∑

i=1

111{Xi ≤ 0}+ 2

n∑
i=1

111{Xi ≤ 1}

)
,

where 111{·} dneotes the indicator function.

(i) Calculate E[γ̂].

(ii) What is the limiting distribution of √n(γ̂ − γ)? Justify your answer.

Solution

(i) E[γ̂] = F (0) + 2F (1) = γ.

(ii) By CLT, √n(γ̂ − γ)
d−→ N (0,Var(111{X ≤ 0}+ 2111{X ≤ 1})). This variance is

E[(111{X ≤ 0}+ 2111{X ≤ 1})2]− γ2 = 5F (0) + 4F (1)− (F (0) + 2F (1))2.

Problem 15 (2021 September, # 8). Answer the following questions.

(i) Suppose that (Xn, Yn)
d−→ N (0,Σ) in distribution with Σ = [2, 1; 1, 1]. What does (Xn − Yn)

2 converge in distribution? Prove
your answer.

(ii) Suppose that (Xn,
√
nYn)

d−→ N (0,Σ) in distribution with Σ = [2, 1; 1, 1]. What does (Xn − Yn)
2 converge to in distribution?

Prove your answer.

(iii) LetXn
P−→ 1. For eachXn, we pick Yn uniformly at random from the internet [0, Xn]. What does Yn converge to in distribution?

Prove your answer.

Solution

(i) Let (Z1, Z2) ∼ N (0002,Σ). Then, by continuous mapping theorem, Xn − Yn
d−→ Z1 − Z2 ∼ N (0, 1) by Cramer-Wold

(where Var(Z1 − Z2) = 2 + 1− 2 = 1). Thus, again by continuous mapping theorem, (Xn − Yn)
2 d−→ χ2

1.

(ii) By Cramer-Wold, we have√
n·Yn

d−→ N (0, 1)which implies Yn
d−→ 0 by Slutsky. Then, again by Slutsky, Xn−Yn

d−→ N (0, 2)

so that (Xn − Yn)
2 d−→ 2 · χ2

1.

(iii) I’ll assume Xn > 0 a.s. for all n or else the problem doesn’t make sense. We claim Yn
d−→ Unif([0, 1]). Fix y ∈ [0, 1]

and let G(x) = y·111{y∈[0,x]}
x which is the cdf of Yn|Xn = x at y. Then, note that G(y) is a bounded and a.s. continuous

function. Thus, by Portmanteau theorem, Xn
d−→ 1 implies E[G(Xn)] → G(1). But, G(1) is just the Unif([0, 1]) cdf

evaluated at y. Thus, we’ve shown convergence of cdfs E[G(Xn)] = FYn
(y) → y · 111{y ∈ [0, 1]} for all y ∈ [0, 1] meaning

Yn
d−→ Unif([0, 1]).

Page 8


	Solutions
	Previous Core Competency Problems


