[ Review Session 5 - Solutions ]

1 Solutions

1.1 Previous Core Competency Problems

Problem 1 (2018 Summer Practice, # 11). Suppose that X;,..., X, 3 Ber(\/n).

(a) What is the distribution of -7 | X;.

(b) Compute lim,,_,o. P(>"1, X; = k), where k is any fixed nonnegative integer, and hence show that > | X; converges in
distribution to a random variable Y.

(c) Compute E[Y (Y — 1)], where Y is as in part (b).
(@) >i, X; ~ Binomial(n, A/n).
(b) We claimY =" | X; N Poisson(\). Indeed, we have

, 0N am—1)(n—k+1) A W AL n_ A s
JLHQOP(;XI—k)_JE& o .(1_)\/n)k(1—A/n) = o7 dim (1= /n)" = Jme™

© E[Y (Y —1)]=E[Y?] —E[Y]= A+ X2 - )=\

Problem 2 (2018 Summer Practice, # 16). Farmers in the Hudson Valley pack apples into bags of approximately 10 pounds, but
due to the variation in apples the actual weight varies. We may model the weight of a bag as uniformly distributed in [9.5,10.5]
and independent of other bags. The farmers load 1200 bags onto a truck with maximal admissible load of 13000 pounds. Find a
simple approximation to the probability that the truck is overloaded, expressed in terms of the Normal distribution.

Let W; be the weight of the i-th bag, so that E[W;] = 10 and Var(V;) = 1/12. Then, by CLT:

W00 — 10

d
1/T\/noo S N(0,1).

Thus,

1200 T
W —10
P W, > 13000 | =P | ——+/1200 > 100> ~ P(N(0,1) > 100
(Z ) (s L=

Problem 3 (2018 Summer Practice, # 19). suppose for everyn > 1, A,, is a real symmetric matrix of size n x n, whose eigenvalues
(M, ..., \,) satisfies the following properties:

(i) max?_; |\;| "= 0.
(i) 7 A2 =1.

Find the asymptotic distribution of 77, A,.(i, j)X; X;, where {X;},>, is a sequence of i.i.d. N(0,1).
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By the eigendecomposition of 4,, it suffices to compute the limiting distribution of S,, := """ | X2);. We will proceed via

Lyapunov CLT for the triangular array {X;\;}; . Condition (ii) gives us that the normalization constantis > , A? = 1 for
all n € N. Next, we verify the third-moment condition:

lim > "E[X7A — Ml =1im > [XPE[IX? — 1] < (max |A]) - E[| X2 — 1] =570

=1 =1

i=1

Thus, by Lyapunov CLT, S, — 327 A & A(0, Var(X2)).

Problem 4 (2018 September, # 3). Suppose that, for n > 1, X,, is a random variable taking values in {1/n,2/n,...,n/n} with
equal probability 1/n.

(i) Show that X,, converges in distribution, as n — co? What is its weak limit?

(ii) Let f:]0,1] — R be defined as f(x) = zsin(x), for « € [0, 1]. Using the above or otherwise, show that
) 1 n k 1
nlgnéoﬁ;f (n> */0 J(@)de.

(i) We will show this by an mgf computation. We have the mgf of X,, is

{1 (et'(nzl)—1> t 0
_et-k/n _Jn et/mn_1 7& )

1 t=20

S|

>

k=1

Next, we take the limit as n — oo. Suppose t # 0. We have lim,, e/ (*+

n

) — 1=t — 1. Next, via L'Hopital's rule:
t/n _ 1 _t t/n
limn(e!/" — 1) = lim 61T = lim —=* /6n2 = lim e/ = 1.

Thus, the mgf of X,, goes to (¢! — 1)/t for ¢t # 0 and 1 for ¢ = 0. This is precisely the mgf of a Unif([0, 1]), whence
X, & Unif([0, 1]).

(ii) fis abounded, continuous function on [0, 1]. Thus, by portmanteau theorem,

lim E[f(X0)] = Ex~uni (o1 [f (X)]),

which is the desired result.

Remark 1.1. (ii) also follows from just the definition of the Riemann integral fol f(z) dz (which of course exists for continuous
f):

Problem 5 (2018 September, # 7). Suppose X3,..., X, are i.i.d. with P(X; = £+1) = % Define

v; =[] X, fori=1,...,n.
j=1

(i) Find the joint distribution of (Y7, Y3).

(ii) Derive the limiting distribution of % Y Y
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Working out the various cases, we see that (Y1, Y2) takes values (£1, £1) uniformly. We have each Y; is &1 with prob-
b|I|ty 1/2 and by induction, the {Y;}? ,'s are mutually independent since P(Y,,+1|Y1,...,Y,) = P(Y,41). Thus, by CLT,

ﬁ Y 9, N(0,1).

Problem 6 (2019, May # 2). Let Z;,..., Z, be i.i.d. random variables with density f. Suppose that (i) P(Z; > 0) =1, and (ii) f is
continuous on [0, ¢), for some e > 0. Let A := f(0). Let

X, =nmin{Z,...,Z,}.

Show that X,, converges in distribution, and find the limiting distribution.

We have for ¢ > 0:

n

P(X, >c) = H]P’(Zi >c¢/n) = (1— F(e/n))".

=1
Next, we consider lim,, log((1 — F(¢/n)™) = lim,, nlog(1 — F(c/n)). By L'Hdpital's rule:

fle/x)-c/z?

lim (080 = Fle/n) _ oy AoRm o, —I(/)

n 1/n Caoo —1/22 z—o0l — F(c/z)’
Since f is continuous near 0, so is its antiderivative with lim,_,~, F(¢/z) = 0. Thus, the above RHS is equal to — f(0)-¢ = —\-¢,
meaning P(X,, > ¢) — e=*. Thus, X,, % exp(\).

Problem 7 (2019 May, # 8). Suppose you have a quadratic form XfAan, where X,, ~ N,, (0,,x1,1,xx), and A, is a symmetric
n x n matrix with 0 on the diagonal. Let (A1, A2, - .., An,») denote the eigenvalues of A,,, and let | Al|2, == />, Af)n denote
the ¢;-norm of the eigenvalues.

X IAtn\

(a) If lim “—5—— =0, show that 7,, := = ol XTA X, & N(0,1) as n — .
n—o0

[Hint: You may use Lyapunov’sﬂ CLT. Note that the trace of a square matrix is the sum of its eigenvalues. ]

(b) If

show that 7,, 49, X3 - 1.

(a) By an eigendecomposition of 4,,, we can write

n

1 T d 1 2
X, A Xy = ——— XZ Ain-
A2, ||)\||2,n; B

Next, since Tr(A,) =0=>"", A\, ,, we have E {H/\H XT4,X } = 0. Finally, for the sake of using Lyapunov’s CLT, we
last need the third moment condition which amounts to bounding:

ZIAMI?’ (maxi lAi’”') izt X oo

hm
||A||2n 2 IV,

TLyapunov’s CLT: Suppose that {Z1, Z2,...} is a sequence of independent random variables such that Z; has finite expected value x; and variance 2.
Define s2 := 32" Iflimnoo o5 327 B[ Z; — wif*] = Ois satisfied, then - 377, (Zi — i) 9 N(O,1).

7,1L
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Thus, by Lyapunov CLT T;, —>J\/(0 Var(X?,)) = N(0,2).

(b) First, we write

T, = X2, - + :
b ||)\||2n Z ||/\||2n

The first term on the RHS goes to x? in distribution by Slutsky. It suffices to show the second term on the RHS goes
to —1. In fact, we claim this will follow from:

P
IIAllan (ZX m]%) = 0. (1)

1=2

To verify (1), we have for any fixed e > 0, by Chebyshev:

(nAnzn

Then, it suffices to show % — 0. But, this follows immediately from realizing

= Vi X2 o N
Z i Ain —E[X2] - Aial 2 €] < - (Zz:g o )
IAlIZ,0, - €

=2
Var (X,
||/\||2 n € Z

=2

A% ,n Z?:Q )‘z2,n . 2?22 A?,n
+ —— =14 lim ——==>—=.
IALIZ,, no MG,

hm

Finally, we have that >""" , \; , = 0 for all » € N gives us

n n

1
o 2 B s

=2

Putting everything together, we conclude T,, LN X3 — 1.

Remark 1.2. Note that our use of Chebyshev to establish (T) can be considered a strong version of Law of Large Numbers for
triangular arrays (e.g., see Theorem 2.2.4 in Durrett's Probability: Theory and Examples).

Problem 8 (2019 May, # 9). LetY, = [[;_, X; where X;,..., X,, are i.i.d. nonnegative non-degenerate random variables with
mean E(X;) = 1. Prove that Y,, P 0asn — oo when: () P(X; =0) >0, and (i) P(X; = 0) = 0.

(i) Fore > 0, we have
P(Y,, >€) <P(Vi € [n] : X; > 0) = P(X; > 0)".

However, since P(X; > 0) < 1, the RHS above goes to 0 as n — cc. Thus, Y, 5.

(i) We may now assume WLOG that X; > 0 everywhere. Consider the transformation X — log(X). We have, by Jensen:

Ellog(X1)] < log E[X;] = 0.

Thus, SLLN gives log(Y;,) = 327, log(X;) 225 —oc0, meaning ¥, = 0.

Problem 9 (2019 May, # 10). Let fx y(x,y) be a bivariate density and let (X1,Y7),...,(Xn,Yn) beiid. fxy. Let w(-) be an
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arbitrary probability density function. Let
Xi)

fxy
Z fxy XZ,YJ

Show that, for any = € R, fx () L fx(z), where fx is the marginal density of X;.

It suffices to show

fxy(z,Y) 'w(Xl)}
E / = )
X1,Y1 |: fX’Y(Xl,}/l) fX(l')
whence the result will follow from LLN. Indeed, we have
Ixy(z,Y1)- } /
B Y1) d(X1,Y
o [ ny(X1,Y1 fxy (2, Y1) - w(Xq) d(Xy, Y1)

where choosing the order of integration is justified by Tonelli's theorem.

Problem 10 (2019 September, # 6). Suppose that X, X5, ... are i.i.d. having an exponential distribution with mean 1. Show that

maxi<kp<n Xk P
M_}laSn_)OO
logn

where £ denotes convergence in probability.

We have for e € (0,1):

2o Xe
2Sksn — > < — o
P Tog(n) 1| > e P <1I<nka§nXk > (1+e€) 1og(n)> +P (11232( <(1—¢) log(n)>

<n-e”(Floe() 4 (1 _ g=(1=€)log(n)yn

_n 1 1 "
— ne+1 + - nl—e

However, both of these last terms go to 0 as n — o (the second limit can be computed with I'Hbpital's rule). Thus, we've
shown the definition of max;<;<,, Xj/log(n) 2.

Problem 11 (2020 May, # 2). Let X;, X5, ..., X,, denote nindependent and identically distributed observations from Uniform(0, 1).
We order these observations according to their distance from « = 0.75 and call the ordered ones Xty Xy (n)- Note that

Xy and X7, are, respectively, the closest and farthest observations from z = 0.75.

(i) Prove that X7, converges to 0.75 in probability.

(ii) What does X{,) converge toin probability? Prove your answer.
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(i)
P(IXE, —0.75 > e) = [[P(1Xi — 0.75] > ) = [J(1 — 2¢) =37 0.
=1

i=1

(ii) We claim X(””n) . Indeed, for € < 0.75, we have X(gﬂn) >e = Vi€ [n]: X; > esothat

n—roo

=1-¢" —0

E

S

V
H::

><

Vv

Problem 12 (2020 September, # 2). Suppose that X3, ..., X5, arei.i.d. U[0,1]. LetY; = Xo; 1 + Xp; for1 <i <n.

(@) Find the limiting distribution of Y.

(b) Find the limiting distribution of \/n(2 — Y{,,)) as n — oo.

(a) Y7 has cdf

P(X1+ X, <t) = fO Xl<t_$)dm:fot(t—x)dﬂ«“=t2/2 teo,1]
ft 1 X1St—m)dx—kfgilldm:2t—t2/2—1 te(l,2]

(b) For w > 0 and n large enough we have, using part (a),

This last expression goes to e=**/2 as n — oo. Thus, the limiting distribution of \/n(2 — Y(n)) has cdf F(w) = 1— e~w’/2
for w > 0.
Problem 13 (2021 September, # 5). Suppose {¢;}i>o are i.i.d. A(0,1) random variables. Find the constant ¢ such that
maxi<i<n X; P .
log(n) ’
for each of the following three cases where {X,};>; is defined.

(i) X; = 5*\fflforz>1
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(i) We first write the cdf of max; &;/+/log(n). This is

P ( max; §Z < LU) _ P(fo < ZL’\/M)TL = CI)(LC\/M)”?

log(n)

where @(.) is the standard normal cdf. First, if z < 0, then we see that

lign O (z+/log(n))"™ < 1irrln(1/2)" = 0.

So, it suffices to compute lim,, ®(z+/log(n))™ for z > 0. We apply L'Hopital’s rule to log(®(z+/log(n))™) (let ¢(-) be the
standard normal pdf) giving:

o Tox(@(ay/lg®) _ |, Tyt VIR T ()

n 1/n on —1/n?
i nl—x2/2 .
w2y /log(n) B(ay/log(m))
) —o0 z€(0, \/i)
a {0 T>2

Thus, lim,, ®(z+/log(n)) — 1{z > v/2} which is the cdf of the constant v/2. Thus, ¢ = v/2 for (i).

iy max; &i+8o o max; §; P i P
(if) e = Viesw + e V2 by (i) and the fact that &,/+/log(n) — 0.

(iii) We have

P (mZaxXZ— < x@) =P (— mZaxXZ- > —z log(n))
=P (miinXi > —m@) .

where we replace each X; with —X; by symmetry at the last step. Next, if min; X; > —x+/log(n), then for each i € [n],
Sd8=t > —z/log(n) which means that for each i € [n] either & > —a+/log(n)/2 or &1 > —z/log(n)/2. In particular,
this is true for every odd i € [n]. Thus, we can bound the RHS probability above by:

P (Z €1,...,[n/2] : max(&2;, &2i+1) = —x 10g(”)/2) < (2 P (N(O, 1) > —x\/W» o

< (2 - 28(—2v/log(n)/2)) /2.

We again apply L'Hopital to find the limit of this last expression. To get rid of the annoying |n/2] we'll replace the
exponent |n/2]| with the smaller n/4 which only makes the above bound larger (and as we shall see will be suitable
for our end results). We have

L 20(~x+/log(n)/2))

1i7rln log((2 — 2®(—x+/log(n)/2))"/4) = in /n
Ol (2 osm/2) (-225) %
e —4/n?
nl=e’/4 .y 1

log(n) - ®(—xz+/log(n)/2)

This last expression goes to —co for x € [0,2) and goes to 0 for x = 2. Thus, taking exp(-), we find that

0 0,2
117511P<m?xXi <z log(n)> < {1 iigv )
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On the other hand, max; % < log(n) = max; X; < z4/log(n) so that

z
2

max; &;

log(n)

P (maXXi <z log(n)) >P (maxgi <z log(n)/2) =P < < x/x/ﬁ) e 1{z > 2},
where the last part follows from part (i). Putting these upper and lower bounds on the cdf of max; X;/+/log(n)
together, we see that 22X Py o

v/ 2log(n)

Problem 14 (2021 September, # 7). Let X3, X5,..., X, Hd (F denotes the CDF). Our goal is to estimate v = F'(0) + 2F(1). We

employ the following estimate
(Zl{Xi <0b+2) 1{X; < 1}) ,
i=1

i=1

’3/:

Sl

where 1{-} dneotes the indicator function.

(i) Calculate E[4].

(ii) What is the limiting distribution of \/n(% — ~)? Justify your answer.

(i) B3] = F(0) + 2F(1) = 1.
(i) By CLT, V(5 — 7) & N(0, Var(1{X < 0} + 21{X < 1})). This variance is

E[(1{X <0} +21{X < 1})?] —+*> = 5F(0) + 4F (1) — (F(0) + 2F(1))*.

Problem 15 (2021 September, # 8). Answer the following questions.

(i) Suppose that (X,,,Y},) 4 N(0,%) in distribution with ¥ = [2,1; 1, 1]. What does (X,, — ¥,,)? converge in distribution? Prove
your answer.

(i) Suppose that (X,,,/nY,) LN N(0,%) in distribution with © = [2,1;1,1]. What does (X,, — Y;,)? converge to in distribution?
Prove your answer.

(iii) Let X, P, 1. Foreach X, we pick Y,, uniformly at random from the internet [0, X,,]. What does Y,, converge to in distribution?
Prove your answer.

(i) Let (Z1,Z3) ~ N(02,%). Then, by continuous mapping theorem, X,, — Y, & 7 — Zp ~ N(0,1) by Cramer-Wold
(where Var(Z; — Z5) = 2+ 1 — 2 = 1). Thus, again by continuous mapping theorem, (X,, — Y,,)? LN X3

(iiy By Cramer-Wold, we have \/n-Y,, LN N (0, 1) which implies Y, 90 by Slutsky. Then, again by Slutsky, X,,—Y,, LN N(0,2)
so that (X, — ¥,)2 % 2 2.

(iii) I'll assume X,, > 0 a.s. for all n or else the problem doesn't make sense. We claim Y, LN Unif([0, 1]). Fix y € [0, 1]
and let G(xz) = 21v€l02ll \which is the cdf of Y,,|X,, = = at y. Then, note that G(y) is a bounded and a.s. continuous

function. Thus, by Portmanteau theorem, X, 41 implies E[G(X,,)] — G(1). But, G(1) is just the Unif([0,1]) cdf
evaluated at y. Thus, we've shown convergence of cdfs E[G(X,,)] = Fy, (v) — y - 1{y € [0, 1]} for all y € [0, 1] meaning

v, < Unif ([0, 1)).
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