
Review Session 6 – Solutions

1 Solutions

1.1 Previous Core Competency Problems

Problem 1 (May 2018, # 3). Let W1,W2, . . . ,Wk be unbiased estimators of a parameter θ with Var(Wi) = σ2
i and Cov(Wi,Wj) = 0

if i ̸= j.

(a) Show that among all estimators of the form
∑k

i=1 aiWi, where ai’s are constants and Eθ(
∑

i aiWi) = θ, the estimator
W ∗ =

∑
i Wi/σ

2
i∑

i 1/σ
2
i

has minimum variance.

(b) Show that Var(W ∗) = 1∑
i 1/σ

2
i

.

Solution
It’s straightforward to compute Var(W ∗) = 1∑

i 1/σ
2
i

. By Cauchy-Schwarz, we have

1 =

∣∣∣∣∣
k∑

i=1

ai

∣∣∣∣∣
2

=

∣∣∣∣∣
k∑

i=1

(aiσi)

(
1

σi

)∣∣∣∣∣
2

≤

∣∣∣∣∣
k∑

i=1

a2iσ
2
i

∣∣∣∣∣
∣∣∣∣∣

k∑
i=1

1

σ2
i

∣∣∣∣∣ =⇒ 1∑k
i=1

1
σ2
i

≤
k∑

i=1

a2iσ
2
i = Var

(
k∑

i=1

aiWi

)

Thus, W ∗ minimizes the variance among all estimators of the form
∑k

i=1 aiWi.

Problem 2 (May 2018, # 6). Consider observed response variables Y1, . . . , Yn ∈ R that depend linearly on covariates x1, . . . , xn
as follows:

Yi = βxi + ϵi, for i = 1, . . . , n.

Here, the ϵi’s are independent Gaussian noise variables, but we do not assume they have the same variance. Instead, they are
distributed as ϵi ∼ N(0, σ2

i ) for possibly different variances σ2
1 , . . . , σ

2
n. The unknown parameter of interest is β.

(a) Suppose that the error variances σ2
1 , . . . , σ

2
n are all known. Find the MLE β̂ for β in this case and derive an explicit formula

for β̂. Show that β̂ minimizes a certain weighted least-squares criterion.

(b) Show that the estimate β̂ in part (a) is unbiased, and derive a formula for the variance of β̂ in terms of σ2
1 , . . . , σ

2
n and

x1, . . . , xn.

(c) Compute the Fisher information I(β) in this model (still assuming σ2
1 , . . . , σ

2
n are known constants). Compare this value

with the variance of β̂ derived in part (b).

Solution
Let Y = (Y1, . . . , Yn). We have log-likelihood

L(β|Y, σ2
1 , . . . , σ

2
n) =

1

(2π)n/2
∏
σi

exp

(
−
∑ (yi − βxi)

2

2σ2
i

)
=⇒

logL(β|Y, σ2
1 , . . . , σ

2
n) = logC −

n∑
i=1

(Yi − βxi)
2

2σ2
i

1
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where C does not depend on β. Thus, the least-squares criterion to be minimized is then
n∑

i=1

(Yi − βxi)
2

2σ2
i

and this has solution at

∂

∂β
logL(β|Y, σ2

1 , . . . , σ
2
n) =

∑ −2xiYi + 2βx2i
2σ2

i

= 0 =⇒ β̂ =

∑
xiYi/σ

2
i∑

x2i /σ
2
i

.

Showing E[β̂] = β is straightforward and we have

Var(β̂) =
1∑
x2i /σ

2
i

We get I(β) =
∑
x2i /σ

2
i . We have I(β)−1 = Var(β̂) meaning β̂ satisfies the Cramer-Rao lower bound.

Problem 3 (May 2018, # 7). Suppose that X ∼ Poisson(λ) and its parameter λ > 0 has a prior distribution Gamma(α, β) given
by density

f(y|α, β) = βα

Γ(α)
e−yβyα−1, for y ≥ 0, (and 0 otherwise).

(a) Find the posterior distribution of λ given the observation X, and identify the distribution with its parameters.

(b) Find the mean of this posterior distribution.

Solution

(a) It’s straightforward to show π(λ|X) ∼ Gamma(x+ α, β + 1).

(b) Since the posterior is a gamma, E[λ|X] = x+α
β+1 . To prove this, we have

E[λ|X] =

∫ ∞

0

(β + 1)x+α

Γ(x+ α)
e−λ(β+1)λx+α dλ

=

∫ ∞

0

Γ(x+ α+ 1)

Γ(x+ α)(β + 1)
fΓ,x+α+1,β+1(λ) dλ

=
Γ(x+ α+ 1)

(β + 1)Γ(x+ α)

=
x+ α

β + 1

where we make use of the fact that Γ(k + α+ 1) = (k + α)Γ(k + α) and fΓ,k+α+1,β denotes the pdf of a Gamma(k +
α+ 1, β + 1) distribution.

Problem 4 (May 2018, # 8). Suppose X1, X2
i.i.d.∼ Ber(p) for some unknown parameter p ∈ (0, 1). Find an unbiased estimator for

the following functions of p, if there exists one.

(a) g(p) = 2p.

(b) g(p) = p(1− p).

(c) g(p) = p2.

(d) g(p) = p3.
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Solution

(a) X1 +X2

(b) S2 := 1
n−1

∑2
i=1(Xi −X2)

2

(c) X2 − S2

(d) We claim no unbiased estimator exists. For contradiction, suppose U(X1, X2) is an unbiased estimator of p3. Then,

E[U(X1, X2)] = p3 =⇒ (1− p)p(U(1, 0) + U(0, 1)) + (1− p)2U(0, 0) + p2U(1, 1) = p3.

However, the RHS is a polynomial of degree 3 in p, while the LHS is of degree 2, meaning the above cannot be
satisfied for all p ∈ [0, 1] for any choice of {U(0, 1), U(1, 0), U(0, 0), U(1, 1)}.

Problem 5 (September 2019, # 7). Suppose that X1, . . . , Xn are i.i.d. uniform random variables on [0, θ] for some θ ∈ [1, 2].

(i) What is the MLE of θ?

(ii) Suppose that, instead of Xi’s, we only observe, for all i = 1, . . . , n,

Yi =

{
Xi if Xi ≤ 1

0 otherwise.

What is the MLE of θ based on {Y1, . . . , Yn}?

Solution

(i) We have the joint likelihood is L(θ|X1, . . . , Xn) = 1/θn · 111{maxiXi ≤ θ}. This is maximized over θ ∈ [1, 2] at θ̂ :=

max

(
1, max

i=1,...,n
Xi

)
.

(ii) We have the likelihood function of θ based on a single Y1 is

L(θ|Y1) =
1

θ
· 111{Yi ∈ (0, 1]}+ θ − 1

θ
· 111{Yi = 0}.

Thus, the joint likelihood is

L(θ|Y1, . . . , Yn) =
(
1

θ

)m(
1− 1

θ

)n−m

,

where m :=
∑n

i=1 111{Yi > 0} is the number of Yi’s which are positive. We claim the above is maximized at
θ̂ = min(max(n/m, 1), 2) (i.e., round n/m to the nearest point in [1, 2]).

To see this, we can first recognize the term (1/θ)m(1− 1/θ)n−m as a binomial pdf with parameter 1/θ. Thus, it must
be maximized at θ∗ = n/m. In fact, θ∗ is the only stationary point of the function

θ 7→ (1/θ)m(1− 1/θ)n−m,

and this function is increasing for θ < θ∗ and decreasing for θ > θ∗. Thus, the constrained maximum
maxθ∈[1,2](1/θ)

m(1 − 1/θ)n−m must be achieved at n/m if n/m ∈ [1, 2] or else the nearest boundary point among
{1, 2} to n/m.

Problem 6 (September 2019, # 8). Suppose that a measurement Y is recorded with a N(θ, σ2) sampling distribution, with σ
known and θ known to lie in the interval [0, 1] (but otherwise unknown). Consider two point estimators of θ: (a) the posterior
mean θ̂B based on the assumption of a uniform prior distribution on θ on [0, 1], and (b) the maximum likelihood estimate θ̂M ,
restricted to the range [0, 1].

(i) Show that, as σ → ∞, θ̂B converges in distribution (to Y1, say). Identify the limit Y1. [Hint: You may first find the distribution
of Θ|Y = y and then take limits.]
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(ii) Show that, as σ → ∞, θ̂M converges in distribution (to Y2, say). Identify the limit Y2.

(iii) If σ is large enough, which estimator θ̂M or θ̂B has a higher mean squared error, for any value of θ in [0, 1]. You may answer
this question by comparing the mean squared errors of Y1 and Y2 for estimating θ.

Solution

(i) With uniform prior πθ ∼ Unif([0, 1]), we have posterior

π(θ|Y ) ∝ L(Y |θ) · π(θ) = exp

(
− (Y − θ)2

2σ2

)
· 111{θ ∈ [0, 1]} · 1√

2πσ2
.

To compute the limiting distribution, let x ∈ [0, 1] and let Z ∼ N (0, 1). Then, the CDF of θ|Y is

P(θ ≤ x|Y ) = P(0 ≤ N (Y, σ2) ≤ x|0 ≤ N (Y, σ2) ≤ 1)

= P(0 ≤ σ · Z + Y ≤ x|0 ≤ σ · Z + Y ≤ 1)

= P(−Y/σ ≤ Z ≤ (x− Y )/σ| − Y/σ ≤ Z ≤ (1− Y )/σ)

=
P(−Y/σ ≤ Z ≤ (x− Y )/σ)

P(−Y/σ ≤ Z ≤ (1− Y )/σ)
.

Then, letting Φ, ϕ be the standard normal cdf and pdf, respectively, we have the above is

Φ
(
x−Y
σ

)
− Φ

(
−Y

σ

)
Φ
(
1−Y
σ

)
− Φ

(
−Y

σ

) .
To take limit as σ → ∞, we use l’Hôpital’s rule:

lim
σ→∞

Φ
(
x−Y
σ

)
− Φ

(
−Y

σ

)
Φ
(
1−Y
σ

)
− Φ

(
−Y

σ

) = lim
σ→∞

−
(
X−Y
σ2

)
ϕ
(
x−Y
σ

)
−
(
Y
σ2

)
ϕ
(
−Y

σ

)
−
(
1−Y
σ2

)
ϕ
(
1−Y
σ

)
− Y

σ2ϕ
(
−Y

σ

)
= lim

σ→∞

−(x− Y )ϕ
(
x−Y
σ

)
− Y ϕ

(
−Y

σ

)
−(1− Y )ϕ

(
1−Y
σ

)
− Y ϕ

(
−Y

σ

)
=

−xϕ(0)
−ϕ(0)

= x.

Thus, θ|Y d−→ Unif([0, 1]) meaning by bounded convergence theorem, θ̂B := E[θ|Y ]
σ→∞−→ 1/2.

(ii) The MLE is seen to be θ̂M = max(min(Y, 1), 0) (i.e., round Y to the nearest point of [0, 1]). Next, we compute the limit
of the cdf P(θ̂M ≤ x). If x < 0, this is clearly 0 and if x ≥ 1, this is 1. For x ∈ [0, 1), we have

P(θ̂M ≤ x) = P(Y ≤ x) = P(σ · Z + θ ≤ x) = P
(
Z ≤ x− θ

σ

)
σ→∞−→ P(Z ≤ 0) = 1/2.

Thus, we have θ̂M σ→∞−→ Ber(1/2).

(iii) The MSE of E[Y1|Y ] = 1/2 is (1/2− θ)2, while the MSE of Y2 ∼ Ber(1/2) is 1
2 (1− θ)2 + 1

2θ
2. Straightforward algebra

shows Y1 has lower MSE for all θ ∈ [0, 1];

Problem 7 (May 2020, # 6). Suppose that we have single observation from X from the exponential distribution with parameter
λ. Define T (X) = I(X > 1), where I is the indicator function. Set ψ(λ) := e−λ.

(i) Show that T (X) is unbiased for ψ(λ).

(ii) Find the (Fisher) information bound for unbiased estimators of ψ(λ).

(iii) Show that the variance of T (X) is strictly larger than the information bound.
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Solution

(i) We have P(X > 1) = 1− (1− e−λ) = e−λ so that T (X) is unbiased for ψ(λ).

(ii) The Fisher information I(λ) w.r.t. λ can be computed as 1/λ2 and then the Fisher information w.r.t. ψ(λ) is, by chain
rule:

I(ψ) = I(λ) ·
(
∂λ

∂ψ

)2

=
e2λ

λ2
.

Thus, the CR lower bound is λ2/e2λ

(iii) Var(T (X)) = ψ(λ)− ψ(λ)2 = e−λ − e−2λ. Thus, we wish to show

e−λ − e−2λ >
λ2

e2λ
⇐⇒ eλ > λ2 + 1.

However, we claim the last inequality is always true for λ > 0. Taking a power series expansion of eλ, we have

eλ > 1 + λ+
λ2

2
+
λ3

6
> λ2 + 1 ⇐⇒ λ2

6
− λ

2
+ 1 > 0.

However, the quadratic λ2/6−λ/2+1 has a negative discriminant meaning it is is always positive. Thus, the variance
of T (X) is strictly larger than the information bound.

Problem 8 (September 2020, # 5). Consider the following Bayesian model

Y1, . . . , Yn
iid∼ Uniform([0, θ]) and θ ∼ Pareto(β, λ)

where the pdf of the Pareto distribution is given by

π(θ;β, λ) =
βλβ

θ(β+1)
, θ > λ, β, λ > 0.

Moreover, for this exercise you may assume β > 1.

(a) Use the Bayes formula to derive the posterior density of θ as explicitly as possible.

(b) Compute the prior and posterior means of θ.

Solution

(a) The posterior of θ is given by

L(θ|X1, . . . , Xn) ∝ 111{θ > max(λ,X(n))} · θ−(n+β+1).

Thus, θ|X1, . . . , Xn ∼ Pareto(n+ β,max(λ,X(n))).

(b)

Eπ[θ] =

∫ ∞

λ

βλβ

θβ
dθ =

λβ

β − 1

E[θ|X] = max(λ,X(n)) ·
n+ β

n+ β − 1
,

where we use the first formula to conclude the second formula.

Problem 9 (May 2021, # 1). Let X1, . . . , Xn be an i.i.d. random sample with common density function

f(x) =

{
3θ3x−4 for x ≥ θ

0 otherwise
,

where θ > 0 is an unknown parameter.
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(i) Apply the method of moments to obtain an unbiased estimator of θ.

(ii) Find the maximum likelihood estimator (MLE) of θ and show that it is biased.

(iii) Which of the above two estimators has a smaller mean squared error (MSE)?

Solution

(i) We have
E[X] =

∫ ∞

0

3θ3x−3 dx =
3

2
θ.

Thus, θ̂MOM = Xn · 2
3 .

(ii) The likelihood function is
L(θ|X1, . . . , Xn) =

3n · θ3n∏n
i=1X

4
i

111{X(1) ≥ θ},

which is maximized at θ̂MLE = X(1). Next, to simplify the computation of the bias, we’ll use the tail probability formula
for expectations: for a nonnegative random variable Y ≥ 0:

E[Y ] =

∫ ∞

0

P(Y > t) dt.

Using this formula, we have

E[θ̂MLE] =

∫ ∞

0

P(X(1) > t) dt

=

∫ θ

0

1 dt+

∫ ∞

θ

P(X(1) > t) dt

= θ + 3nθ3n
∫ ∞

θ

(∫ ∞

t

1

x4
dx

)n

dt

= θ + 3nθ3n
∫ ∞

θ

t−3n

3n
dt

= θ + θ3n
(
θ−3n+1

−3n+ 1

)
= θ ·

(
1 +

1

−3n+ 1

)
.

Thus, θ̂MLE is biased.

(iii) We have
E[X2] =

∫ ∞

θ

3θ3x−2 dx = 3θ2.

Thus, Var(X) = 3θ2 − 9
4θ

2 = 3
4θ

2 and Var(Xn) =
3
4θ

2/n. Thus, by a bias-variance decomposition:

E[(θ̂MOM − θ)2] = Var(θ̂MOM) =
1

3
θ2/n.

Next, for the sake of using a bias-variance decomposition, we first compute E[θ̂2MLE] and then Var(θ̂MLE). We have,
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again using the tail probability formula for expectations,

E[θ̂2MLE] =

∫ ∞

0

P(X(1) >
√
t) dt

= θ2 +

∫ ∞

θ2

P(X(1) >
√
t) dt

= θ2 +

∫ ∞

θ2

3nθ3n
(∫ ∞

√
t

1

x4
dx

)n

dt

= θ2 + 3nθ3n
∫ ∞

θ2

t−3n/2

3n
dt

= θ2 + θ3n
θ(−3n/2+1)∗2

−3n/2 + 1

= θ2
(
1 +

1

−3n/2 + 1

)
.

Thus,

Var(θ̂MLE) = E[θ̂2MLE]− E[θ̂MLE]
2 = θ2

(
1 +

1

−3n/2 + 1
−
(
1 +

1

−3n+ 1

)2
)
.

Thus, the MSE of θ̂MLE is

E[(θ̂MLE − θ)2] =

(
1

−3n+ 1

)2

θ2 +Var(θ̂MLE) = θ2
(
− 2

−3n+ 1
+

1

−3n/2 + 1

)
.

We claim θ̂MLE has a smaller MSE. This follows from:

1

3n
> − 2

−3n+ 1
+

1

−3n/2 + 1
⇐⇒ 9n2 > 3n− 2,

where the last inequality is always true.

Problem 10 (September 2021, # 1). Let X1, . . . , Xn be an i.i.d. sample with common density

f(x; θ) =

{
e−(x−θ) x ≥ θ

0 otherwise,

where θ > 0 is an unknown parameter.

(i) Find a one dimensional sufficient statistic Tn.

(ii) Derive the cumulative distribution function Fn of Tn.

(iii) Give an exact (1− α)-confidence interval for θ. (Hint: What is the distribution of Fn(Tn)?).

Solution

(i) X(1) is sufficient based on computing the joint pdf

n∏
i=1

f(xi; θ) = e−
∑

i xi+nθ · 111{x(1) ≥ θ}.

(ii) We have
P(X(1) > c) =

(∫ ∞

c

e−x+θ · 111{x ≥ θ} dx
)n

= enθ−n(c∨θ),

so that Fn(c) = 1− enθ−n(c∨θ).
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(iii) We have n(θ−X(1) ∨ θ) is a log(Unif([0, 1])) random variable so that if [Lα, Uα] is an interval such that n(θ−X(1) ∨ θ) ∈
[Lα, Uα] w.p. 1−α, then θ ∈

(
X(1) +

log(Lα)
n , X(1) +

log(Uα)
n

)
(note we get rid of the maximum in X(1) ∨ θ since X(1) ≥ θ

w.p. 1).

Problem 11 (September 2021, # 2). Let X and Y be two independent exponential random variables with parameters λ and µ,
respectively, i.e. P(X ≥ x, Y ≥ y) = e−λx−µy, x ≥ 0, y ≥ 0. Define random variables

T = min(X,Y ) and ∆ =

{
1 X < Y

0 otherwise.

(i) Find the probability density function of T and the probability mass function of ∆.

(ii) Find the joint distribution function of (T,∆).

(iii) Suppose we have a random sample (Ti,∆i), i = 1, . . . , n, i.e. i.i.d. copies of (T,∆). Write down the likelihood function and
find the MLE of λ.

Solution

(i) We have
P(T ≥ x) = e−x(λ+µ) =⇒ fT (x) =

∂

∂x
1− e−x(λ+µ) = (λ+ µ)e−x(λ+µ),

and
P(∆ = 1) = P(X < Y ) = EX [P(X < Y |X)] =

∫ ∞

0

P(Y > x) · fX(x) dx =

∫ ∞

0

e−µxλe−λx dx =
λ

λ+ µ
.

(ii) We have

P(T ≤ t,∆ ≤ d) =

{
P(T ≤ t) = 1− e−t(λ+µ) d = 1

P(T ≤ t,X ≥ Y ) = EY [P(X ≥ Y |Y ) · 111{Y ≤ t}] =
∫ t

0
P(X > y)fY (y) dy d = 0

.

This last integral is µ
λ+µ

(
1− e−t(λ+µ)

)
.

(iii) First, we see from the part (ii) that

P(T ≤ t,X < Y ) = P(T ≤ t)− P(T ≤ t,X ≥ Y ) =
λ

λ+ µ
− e−t(λ+µ) +

µ

λ+ µ
e−t(λ+µ).

Taking the derivative with respect to t then gives us “joint likelihood” L(t, 1) = λe−t(λ+µ). Note that “joint likelihood”
here involves both continuous and discrete distributions. The derivation above (although not entirely rigorous)
essentially first takes the discrete derivative with respect to ∆ of the joint distribution function from (ii) and then the
continuous derivative with respect to t.
Similarly, the joint likelihood L(t, 0) = µe−(λ+µ)t. Thus, the likelihood function is

L({(Ti,∆i)}ni=1) =

n∏
i=1

e−Ti(λ+µ) (µ · 111{∆i = 0}+ λ · 111{∆i = 1}) = λ
∑n

i=1 ∆iµn−
∑n

i=1 ∆i exp

(
−(λ+ µ)

n∑
i=1

Ti

)
.

Taking log, the part that depends on λ in the above is

log(λ)

n∑
i=1

∆i − λ

n∑
i=1

Ti,

so that the MLE is λMLE =
∑

i ∆i∑
i Ti

.
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1.2 Additional Practice

Problem 12 (Casella & Berger, Exercise 7.12). Let X1, . . . , Xn be a random sample from a population with pmf

Pθ(X = x) = θx(1− θ)1−x, x = 0 or 1, 0 ≤ θ ≤ 1

2
.

(i) Find the method of moments estimator and MLE of θ.

(ii) Find the mean squared errors of each of the estimators.

(iii) Which estimator is preferred? Justify your choice.

Solution

(i) The method of moments estimator is obtained from setting

E[X] = θ = Xn =⇒ θ̂MOM = Xn.

For the MLE, the log-likelihood is

L(θ|X1, . . . , Xn) :=

(
n∑

i=1

Xi

)
log(θ) +

(
n−

n∑
i=1

Xi

)
log(1− θ).

The above is increasing in θ for θ ≤ Xn and decreasing in θ for θ ≥ Xn. IfXn > 1/2, then L(θ|X1, . . . , Xn) is increasing
for θ ∈ [0, 1/2] and is thus maximized at θ = 1/2. Otherwise, we have L(θ|X1, . . . , Xn) is maximized at θ = Xn. Thus,
θ̂MLE = min{Xn, 1/2}.

(ii) The MSE of θ̂MOM is

MSE(θ̂MOM) = Var(θ̂MOM) + Bias(θ̂MOM)2 = (θ(1− θ)/n) + 02 = θ(1− θ)/n.

The MSE of θ̂MLE is

MSE(θ̂MLE) =
n∑

y=0

(θ̂MLE − θ)2
(
n

y

)
θt(1− θ)n−y

=

⌊n/2⌋∑
y=0

( y
n
− θ
)2(n

y

)
θy(1− θ)n−y +

n∑
y=⌊n/2⌋+1

(
1

2
− θ

)2(
n

y

)
θy(1− θ)n−y.

(iii) We first note that

MSE(θ̂MOM) = Var(Xn) =

n∑
y=0

( y
n
− θ
)2(n

y

)
θy(1− θ)n−y.

Thus,

MSE(θ̂MLE)− MSE(θ̂MOM) =

n∑
y=⌊n/2⌋+1

(( y
n
− θ
)2

−
(
1

2
− θ

)2
)(

n

y

)
θt(1− θ)n−y

=

n∑
⌊n/2⌋+1

(
y

n
+

1

2
− 2θ

)(
y

n
− 1

2

)(
n

y

)
θt(1− θ)n−y.

Noting that y/n > 1/2 and θ ≤ 1/2 inside the sum, we have that every summand of the above is positive for θ > 0.
Thus, MSE(θ̂MOM) ≤ MSE(θ̂MLE) where the inequality is strict for θ ∈ (0, 1/2].
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