
Review Session 7 – Solutions

1 Solutions

1.1 Previous Core Competency Problems

Problem 1 (September 2018, # 5). We obtain observations Y1, . . . , Yn which can be described by the relationship

Yi = i× θ + ϵi,

where ϵ1, . . . , ϵn are i.i.d. N(0, σ2); σ2 > 0. Here θ and σ2 are unknown.

(i) Find the least squares estimator θ̂ of θ; i.e., θ̂ = argminθ∈R
∑n

i=1(Yi − iθ)2.

(ii) Is θ̂ unbiased?

(iii) Find the exact distribution of θ̂.

(iv) Find the asymptotic (non-degenerate) distribution of θ̂ (properly normalized).

(v) How would you test the hypothesis H0 : θ = 0 versus H1 : θ ̸= 0 (at level (α ∈ (0, 1))? Describe the test statistic and the
critical value.

Solution

(i) Taking the derivative of the objective with respect to θ, it’s straightforward to compute θ̂ =
∑n

i=1 i·Yi∑n
i=1 i2 .

(ii) θ̂ is unbiased by linearity of expectation.

(iii) θ̂ ∼ N (θ, σ2/
∑n

i=1 i
2).

(iv) From (iii), we have
√∑n

i=1 i
2 · (θ̂ − θ)

d−→ N (0, σ2).

(v) To find a T-statistic for this problem (from which we can derive a level α t-test), it suffices to find an appropriate
estimator of the variance σ2. We’ll consider a variant of the sample variance which takes into account the different
means of the Yi’s. Let

S2 :=
1

n− 1

n∑
i=1

(Yi − iθ̂)2.

We can then observe ∀i ∈ [n] : Cov(Yi − iθ̂, θ̂) = 0. Thus, S2 and θ̂ are independent and next we claim

(n− 1) · S2 ∼ σ2 · χ2
n−1.

This follows from standard facts about normal linear regression where Xi := i is our covariate. For completeness,
I give a full proof of the above claim. First, for ease of notation, define Y = (Y1, . . . , Yn)

T , X = (1, 2, . . . , n)T , and
ϵ = (ϵ1, . . . , ϵn)

T . Then, we have

θ̂ = (XT X)−1XT Y
= (XT X)−1XT (Xθ + ϵ)

= θ + (XT X)−1XT ϵ. (1)

1



Core Competency Review Doc 7 Solutions

Thus,

(n− 1) · S2 = (Y − Xθ̂)T (Y − Xθ)
= (X(θ − θ̂) + ϵ)T (X(θ − θ̂) + ϵ)

= (−X(XT X)−1XT ϵ+ ϵ)T (−X(XT X)−1XT ϵ+ ϵ) (using (1))
= ϵT (Id−X(XT X)−1XT )T (Id−X(XT X)−1XT )ϵ.

We have ϵ/σ ∼ N (0n, Id). Then, we claim that the quadratic form (ϵ/σ)TA(ϵ/σ) with matrix A =

(Id−X(XT X)−1XT )T (Id−X(XT X)−1XT ) is a χ2
n−1 distribution. This follows from verifying A is symmetric, idempotent,

has trace n−1, and then using Problem 10 in the 2018 Summer Practice exam. Thus, our claim (n−1) ·S2 ∼ σ2 ·χ2
n−1

is proven. Then, it follows tha
θ̂ − θ

S/
√∑n

i=1 i
2
∼ Tn−1

from which it is straightforward to derive a level α hypothesis test.

Problem 2 (2019 May, # 1). Let X ∼ Poisson(λ) and Y ∼ Poisson(µ), where λ, µ > 0 and assume that X and Y are independent.

(i) Find the conditional distribution of X given that X + Y = n.

(ii) Use the above, or otherwise, to test the hypothesis (at level α ∈ (0, 1))

H0 : λ = µ versus λ > µ.

Solution

(i) A quick mgf calculation reveals X + Y ∼ Poisson(λ+ µ). Next, we have for k ∈ N ∩ [0, n]:

P(X = k|X + Y = n) =
P(X = k, Y = n− k)

P(X + Y = n)
=

(
e−λ

k! λ
k
)(

e−µ

(n−k)!µ
n−k

)
e−(λ+µ)(λ+µ)n

n!

=

(
n

k

)
λkµn−k

(λ+ µ)n
.

We can further factor the above RHS as
(
n
k

) (
λ

λ+µ

)k (
µ

λ+µ

)n−k

. Thus, X|X + Y = n ∼ Binomial(n, λ/(λ+ µ)).

(ii) We can then form a level α test with rejection region {X > cα} where cα is chosen such that for X + Y = n:
n∑

k=cα

(
n

k

)
· 1

2n
≤ α.

Problem 3 (2020 May, # 5). Suppose that X1, . . . , Xn are i.i.d. observations from the exponential distribution with parameter λ
(recall that E(X1) = λ−1). Consider the following testing problem:

H0 : λ = λ0 versus H1 : λ = λ1,

where 0 < λ1 < λ0. Let f0(X1, . . . , Xn) be the likelihood of the data under H0 and f1(X1, . . . , Xn) that under H1.

(i) Show that log f1(X1,...,Xn)
f0(X1,...,Xn)

is an increasing function of Xn := 1
n

∑n
i=1 Xi.

(ii) Suppose that cα,n is such that Pλ0
(Xn ≥ cα,n) = α, for α ∈ (0, 1). Relate cα,n to qk(β) – the β-th quantile of the χ2

k distribution
(for some k).

(iii) How would you test the hypothesis

H0 : λ = λ0 versus H1 : λ < λ1,

Derive an expression for the power function of the test.
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Solution

(i)

log
f1(X1, . . . , Xn)

f0(X1, . . . , Xn)
= n log(λ1/λ0)− (λ1 − λ0)

n∑
i=1

Xi,

which is increasing in Xn.

(ii) An mgf computation reveals exp(λ) ∼ 1
2λχ

2
2 and thus an i.i.d. sum of exp(λ) R.V.’s is 1

2λχ
2
2n. Thus,

Pλ0
(Xn < cα,n) = 1− α = Pλ0

(χ2
2n < 2λ0n · cα,n).

Thus, q2n(1− α) = 2λ0n · cα,n.

(iii) A natural level α test then has rejection region {Xn ≥ cα,n} with power

Pλ(Xn ≥ cα,n) = P(χ2
2n ≥ 2λn · cα,n).

Problem 4 (2020 May, # 7). Consider the random variable X = µ + σZ, where µ ∈ R, σ > 0 and Z is a random variable with
density f . Suppose that µ and σ are unknown parameters and that the density f is known (completely specified). We have a
random i.i.d sample X1, . . . , Xn with the same distribution as X. You may assume for this problem that E[Z] = 0, E[|Z|] < ∞, and
Var(Z) ∈ (0,∞).

(i) Propose unbiased estimators, µ̂ and σ̂2, of µ and σ2.

(ii) Does the joint distribution of (Xi − µ̂)/σ̂ (i = 1, . . . , n) depend on µ and σ? Explain your answer.

(iii) For a given level α ∈ (0, 1), describe a way to construct a confidence interval for µ with exact coverage probability 1− α.

Note: I added some extra assumptions to this problem (in italics) since I don’t think the problem is solvable without them in
general.

Solution

(i) Let S2 = 1
n−1

∑n
i=1(Xi −Xn)

2. Then, the estimators µ̂ := Xn and σ̂2 := S2/Var(Z) are unbiased estimators of µ and
σ2, respectively.

Remark. Here are my justifications for the extra assumptions I added.
First, if Var(Z) = 0, then Z is a.s. constant which means we cannot form an unbiased estimator of either µ or σ since we
only observe µ+ σ · Z.
If E[Z] ̸= 0, then I claim no unbiased estimator of the location µ can exist. For if µ̂ was an unbiased estimator of µ, then
Xn−µ̂
E[Z]

would be an unbiased estimator of σ. However, an unbiased estimator of σ cannot exist in general (cf. Theorem 2.3
of here).

If E[|Z|],Var(Z) are undefined, then unbiased estimators need not exist for either parameter (e.g., for a Cauchy distribution;
see Proposition 4 of the same paper). I think the problem-writers meant to impose more conditions here.

(ii) Let Xi = µ+ σ · Zi for Zi
i.i.d.∼ f and define Zn = n−1

∑n
i=1 Zi. Then, we have

Xi − µ̂

σ̂
=

Xi −Xn√
σ̂2

=
Zi − Zn√

1
n−1

∑n
i=1(Zi − Zn)2

.

Thus, the distribution of Xi−µ̂
σ̂ only depends on the distribution of Z and not on µ, σ.

(iii) We claim the distribution of T := µ̂−µ√
σ̂2

is free of µ, σ2. Let S2
Z := 1

n−1

∑n
i=1(Zi − Zn)

2. Then,

Xn = µ+ σ · Zn

S2 = σ2 · S2
Z .
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So, we have
T :=

µ̂− µ√
σ̂2

=
σ · Zn

σ
√

S2
Z/Var(Z)

=
Zn√

S2
Z/Var(Z)

Thus, the distribution of T only depends on Z and is free of µ, σ. Then, if T1−α/2, Tα/2 are the corresponding quantiles
of T , we have 1− α C.I.:

µ̂− Tα/2 · σ̂ ≤ µ ≤ µ̂+ T1−α/2 · σ̂.

Problem 5 (2020 September, # 1). Researchers notice that a mutation in a gene predisposes individuals to a kind of radiation-
induced cancer. The researchers theorize that the gene is involved in repairing damage from radiation, and that the mutation
disables the gene. To explore their theory, the researchers obtain cells growing in a laboratory that have the mutation. They
take eight different clumps of the cells, and randomize the clumps to treatment with radiation or no radiation (four in each
group). They then examine a marker of damage from radiation in each cell in each clump, recording whether or not there
appears to be damage. The researchers run the same experiment in clumps of cells that do not have the mutation. They explain
that the cells that do not have the mutation are a “control”. The researchers ask you to analyze the results.

(a) Propose a “reasonable” model to analyze the data.

(b) Propose how you plan to conclude whether mutation plays a role in repairing radiation damage.

Solution
Let M := 111{clump is mutated} and let R := 111{clump is irradiated}. Then, our response vaiable is Y :=
111{clump exhibits damage}, so we can consider a logistic regression model

log

(
E[Y |M,R]

1− E[Y |M,R]

)
= β0 + β1 ·M + β2 ·R,

and conduct a hypothesis test of significance for H0 : β1 = 0 vs. H1 : β1 ̸= 0. This can be done, for example, using Wald’s
test which treats β̂1/SE(β̂1) as approximately N (0, 1), where β̂1 is the MLE of β1.

Problem 6 (2020 September, # 3). Suppose that (X1i, X2i)
i.i.d.∼ N2(θ, I2) for 1 ≤ i ≤ n, where the parameter space is restricted to

Θ := {θ = (θ1, θ2) : θ1, θ2 ≥ 0}. Consider the following hypothesis testing problem:

H0 : θ = (0, 0) versus H1 : θ ∈ Θ\{(0, 0)}.

(a) Find the MLE of θ (when θ ∈ Θ).

(b) Find an expression for the likelihood ratio statistic Λn ∈ (0, 1] in this case.

(c) Find the asymptotic distribution of −2 log Λn, under H0 [Hint: You may want to consider the cases where (X1, X2) belongs
to each of the four quadrants separately.]

Solution

(a) The MLE for θi is Xi · 111{Xi ≥ 0} for i = 1, 2 where Xi = n−1
∑n

j=1 Xij .

(b) The joint likelihood is proportional to

L(θ1, θ2) = exp

(
−n(X1 − θ1)

2

2
− n(X2 − θ2)

2

2

)
,

which is maximized at the MLE or

sup
(θ1,θ2)∈Θ

L(θ1, θ2) = exp
(
−n

2

(
X

2

1 · 111{X1 < 0}+X
2

2 · 111{X2 < 0}
))

.

On the other hand,
L(0, 0) = exp

(
−n

2

(
X

2

1 +X
2

2

))
.
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Thus,
Λn =

L(0, 0)

sup
(θ1,θ2)∈Θ

L(θ1, θ2)
= exp

(
−n

2

(
X

2

1 · 111{X1 ≥ 0}+X
2

2 · 111{X2 ≥ 0}
))

.

(c)
−2 log Λn = n

(
X

2

1 · 111{X1 ≥ 0}+X
2

2 · 111{X2 ≥ 0}
)
.

The function g(x) = x2 · 111{x ≥ 0} is continuous. Thus, since √
n · Xi

d−→ N (0, 1) under H0 by CLT, the continuous
mapping theorem gives us:

−2 log Λn
d−→ Z2

1 · 111{Z1 ≥ 0}+ Z2
2 · 111{Z2 ≥ 0},

where Z1, Z2
i.i.d.∼ N (0, 1).

Problem 7 (2021 May, # 2). Let X1, X2, . . . , Xn be from an i.i.d. random sample Uniform(0, θ), where θ > 0 is an unknown
parameter. Suppose that we want to test the following hypothesis:

H0 : 3 ≤ θ ≤ 4 versus H1 : θ < 3 or θ > 4. (2)

Let Yn = max{X1, . . . , Xn}. Consider the following two tests:

δ1 : Reject H0 if Yn ≤ 2.9 or Yn ≥ 4

and
δ2 : Reject H0 if Yn ≤ 2.9 or Yn ≥ 4.5.

(i) Find the power functions of δ1 and δ2, when θ ≤ 4

(ii) Find the power functions of δ1 and δ2, when θ > 4.

(iii) Which of the two tests seems better for testing the hypothesis (2)?

Solution
The power functions of δ1 and δ2 are, respectively

P(Yn ≤ 2.9 ∪ Yn ≥ 4|θ) =


(
2.9
θ

)n
+ 1−

(
4
θ

)n
θ > 4(

2.9
θ

)n
θ ∈ [2.9, 3)

1 θ < 2.9

P(Yn ≤ 2.9 ∪ Yn ≥ 4.5|θ) =


(
2.9
θ

)n
+ 1−

(
4.5
θ

)n
θ > 4.5(

2.9
θ

)n
θ ∈ [2.9, 3) ∪ (4, 4.5]

1 θ < 2.9

.

From the above, we see that δ1 has higher power than δ2 for all values of θ.

1.2 Additional Practice

Problem 8 (Casella & Berger, Exercise 8.8). A special case of a normal family is one in which the mean and variance are related,
the N (θ, a · θ) family.

(a) Find the LRT of H0 : a = 1 versus H1 : a ̸= 0 based on a sample X1, . . . , Xn
i.i.d∼ N (θ, a · θ), where θ is unknown.

(b) Now consider the N (θ, a · θ2) family. If X1, . . . , Xn
i.i.d.∼ N (θ, a · θ2), where θ is unknown, find the LRT of H0 : a = 1 versus

H1 : a ̸= 1.
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Solution

(a) We first compute the unconstrained MLE of (a, θ). We have

L(a, θ|x) =
n∏

i=1

1√
2πaθ

e−(xi−θ)2/(2aθ)

logL(a, θ|x) =
n∑

i=1

−1

2
log(2πaθ)− 1

2aθ
(xi − θ)2

Thus,

∂ log(L)

∂a
=

n∑
i=1

(
− 1

2a
+

1

2θa2
(xi − θ)2

)
= − n

2a
+

1

2θa2

n∑
i=1

(xi − θ)2

∂ log(L)

∂θ
=

n∑
i=1

− 1

2θ
+

1

2aθ2
(xi − θ)2 +

1

aθ
(xi − θ)

Setting the first equation equal to 0, we see that a = 1
nθ

∑n
i=1(xi − θ)2. Substituting this into the second equation

and setting it equal to 0 then gives us

− n

2θ
+

n

2θ
+

n(x− θ)

aθ
= 0 =⇒ θ̂MLE = xn.

Thus, âMLE = 1
n·xn

∑n
i=1(xi − xn)

2 = σ̂2

xn
, where σ̂2 is the usual MLE of the variance. For a = 1, the restricted MLE is

found similarly by setting log-likelihood derivative (which is a quadratic in θ) equal to 0 when a = 1:

θ̂MLE,a=1 =
−1 +

√
1 + 4(σ̂2 + x2)

2
.

Noting that âMLE · θ̂MLE = σ̂2, the LRT is found to be

λ(x) = L(θ̂MLE,a=1|x)
L(âMLE, θ̂MLE|x)

=

∏n
i=1

1√
2πθ̂MLE,a=1

e−(xi−θ̂MLE,a=1)
2/(2θ̂MLE,a=1)∏n

i=1
1√

2πâMLE·θ̂MLE
e−(xi−θ̂MLE)2/(2âMLE·θ̂MLE)

=
(1/(2πθ̂MLE,a=1))

n/2e−
∑

i(xi−θ̂MLE,a=1)
2/(2θ̂MLE,a=1)

1/(2πσ̂2)n/2e−
∑

i(xi−xn)2/(2σ̂2)

= (σ̂2/θ̂MLE,a=1)
n/2e(n/2)−

∑
i(xi−θ̂MLE,a=1)

2/(2θ̂MLE,a=1).

(b) In this case we have

logL(a, θ|x) =
n∑

i=1

−1

2
log(2πaθ2)− 1

2aθ2
(xi − θ)2.

Thus,

∂ log(L)

∂a
=

n∑
i=1

− 1

2a
+

1

2a2θ2
(xi − θ)2 = − n

2a
+

1

2a2θ2

n∑
i=1

(xi − θ)2

∂ log(L)

∂θ
=

n∑
i=1

−1

θ
+

1

aθ3
(xi − θ)2 +

1

aθ2
(xi − θ)

= −n

θ
+

1

aθ3

n∑
i=1

(xi − θ)2 +
1

aθ2

n∑
i=1

(xi − θ).
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Solving the first equation for a in terms of θ yields

a =
1

nθ2

n∑
i=1

(xi − θ)2.

Substituting this into the second equation, we get

−n

θ
+

n

θ
+ n

∑
i(xi − θ)∑
i(xi − θ)2

= 0 =⇒ θ̂ = x,

so that again â = σ̂2

x̂2 . In the restricted case, set a = 1 in the second equation above to get

∂ log(L)

∂θ
= −n

θ
+

1

θ3

n∑
i=1

(xi − θ)2 +
1

θ2

n∑
i=1

(xi − θ) = 0 =⇒ −θ2 + σ̂2 + (xn − θ)2 + θ(xn − θ) = 0.

This is a quadratic in θ with solution for the MLE

θ̂MLE,a=1 = xn +
√
xn + 4(σ̂2 + x2

n)/2,

which yields the LRT statistic

λ(x) = L(θ̂MLE,a=1|x)
L(âMLE, θ̂MLE|x)

=

(
σ̂

θ̂MLE,a=1

)n

e(n/2)−
∑

i(xi−θ̂MLE,a=1)
2/(2θ̂MLE,a=1).

Problem 9 (Casella & Berger, Exercise 8.13). Let X1, X2 be i.i.d. Unif[(θ, θ + 1)]. For testing H0 : θ = 0 versus H1 : θ > 0, consider
two competing tests

ϕ1(X1) : Reject H0 if X1 > .95

ϕ2(X1, X2) : Reject H0 if X1 +X2 > C.

(i) Find the value of C so that ϕ2 has the same size (i.e., probability of committing a Type 1 error) as ϕ1.

(ii) Calculate the power function of each test.

(iii) Which test ϕ1 or ϕ2 is more powerful (i.e., has larger power function)? Does it depend on the value of θ?

Solution

(i) The size of ϕ1 is P(X1 > .95|θ = 0) = .05. The size of ϕ2 is

P(X1 +X2 > C|θ = 0) =

∫ 1

1−C

∫ 1

C−x1

1 dx2 dx1 =
(2− C)2

2
.

Setting this equal to .05 and solving for C gives C = 2−
√
.1 ≈ 1.68.

(ii) ϕ1 has power function

β1(θ) = Pθ(X1 > .95) =


0 θ ≤ −.05

θ + .05 θ ∈ (−.05, .95]

1 .95 < θ

.

Using the distribution of Y = X1 +X2, given by

fY (y|θ) =


y − 2θ 2θ ≤ y < 2θ + 1

2θ + 2− y 2θ + 1 ≤ y < 2θ + 2

0 otherwise,

Page 7



Core Competency Review Doc 7 Solutions

we obtain the power function for ϕ2 as

β2(θ) = Pθ(Y > C) =


0 θ ≤ (C/2)− 1

(2θ + 2− C)2/2 (C/2)− 1 < θ ≤ (C − 1)/2

1− (C − 2θ)2/2 (C − 1)/2 < θ ≤ C/2

1 C/2 < θ

.

From looking at the graphs of the two power functions, we see that ϕ1 is more powerful for θ near 0, but ϕ2 is more
powerful for larger θ’s. Neither test is uniformly more powerful than the other.
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