
Review Session 8 – Solutions

1 Solutions

1.1 Previous Core Competency Problems

Problem 1 (2018 Summer Practice, # 2). Suppose that X1, . . . , Xn are i.i.d. exp(1/µ), where E(X1) = µ > 0.

(i) Find the mean and variance of Xn =
∑n

i=1Xi/n. Hence, find the asymptotic distribution of Xn (properly standardized).

(ii) Let T = logXn. Find the corresponding asymptotic distribution of T (properly standardized).

(iii) How can the asymptotic distribution of T be used to construct an approximate (1−α) confidence interval (CI) for µ? Explain
your answer and give the desired CI.

Solution

We have E[Xn] = µ and Var(Xn) =
µ2

n . Standardized, this is

Xn − µ

µ/
√
n

=
√
n

(
Xn

µ
− 1

)
d−→ N(0, 1)

by CLT so that log(Xn)−log(µ)
µ/

√
n

d−→ N(0, 1/µ2) by delta method. This gives approximate (1− α) CI for logµ

log(Xn)− z1−α/2/
√
n < logµ < log(Xn) + z1−α/2/

√
n

whence we can construct a (1− α) CI for µ by taking exp(·) of both sides.

Problem 2 (2018 Summer Practice, # 5). Suppose that Y1, . . . , Yn are i.i.d Poisson(λ), λ > 0 unknown. Assume that n is even, i.e.,
n = 2k for some integer k. Consider

λ̂ =
1

2k

k∑
i=1

(Y2i − Y2i−1)
2.

(a) Is λ̂ an unbiased estimator of λ (show your steps)?

(b) Is λ̂ a consistent estimator of λ, as k → ∞ (show your steps)?

Solution

λ̂ is unbiased since

E[λ̂] =
1

2k

k∑
i=1

E[Y 2
2i]− 2E[Y2iY2i−1] + E[Y 2

2i−1] =
1

2k

k∑
i=1

2(λ+ λ2)− 2λ2 = λ

It is also consistent since for some function f(λ),

Var(λ̂) =
1

4k2

k∑
i=1

Var(Y 2
2i) + 4Var(Y2iY2i−1) + Var(Y 2

2i−1) =
1

4k
f(λ)

k→∞−→ 0

Problem 3 (2018 September, # 6). Suppose that X1, X2, . . . , Xn are i.i.d. N(θ, 1), where θ ∈ R is unknown. Let ψ = Pθ(X1 > 0).

1



Core Competency Review Doc 8 Solutions

(a) Find the maximum likelihood estimator ψ̂ of ψ.

(b) Find an approximate 95% confidence interval for ψ.

(c) Let Yi = 111{Xi > 0}, for i = 1, . . . , n. Define ψ̃ = (1/n)
∑n

i=1 Yi. Show that ψ̃ is a consistent estimator of ψ.

(d) Find the asymptotic distribution of both the estimators. Which estimator of ψ, ψ̂ or ψ̃, is more preferable in this model and
why?

Solution

(a) Let Φ(·) be the standard normal cdf. Then, ψ = 1− Φ(−θ) so that the MLE of ψ is 1− Φ(−θ̂) by functional invariance
of the MLE.

(b) We have X ∼ N (θ, 1/n) so that w.p. at least 1− α:
zα/2√
n

−X < −θ <
z1−α/2√

n
−X

Since Φ(·) is monotone, this implies

1− Φ

(
zα/2√
n

−X

)
> 1− Φ(−θ̂) > 1− Φ

(
z1−α/2√

n
−X

)
which is a 1− α C.I. for ψ.

(c) This is just Law of Large Numbers.

(d) From CLT, we have √
n(ψ̃ − ψ)

d−→ N(0, σ2) where the asymptotic variance σ2 of ψ̃ is

E[111{Xi > 0}]− E[111{Xi > 0}]2 = (1− Φ(−θ))− (1− Φ(−θ))2 = Φ(−θ)(1− Φ(−θ)).

The asymptotic variance of 1− Φ(−θ̂) is ϕ(−θ)2 by delta method where ϕ(·) is the standard normal pdf. Observe at
θ = 0 that

1

2π
= ϕ(0)2 <

1

4
= (1− Φ(0)) · Φ(0)

We claim this is true for general θ as well. By symmetry of the transformation θ 7→ −θ it suffices to show ϕ(θ)2 <
(1− Φ(θ)) · Φ(θ) for positive θ. Define G(θ) := (1− Φ(θ)) · Φ(θ)− ϕ(θ)2, which is just the difference between the two
asymptotic variances. We clearly have limθ→∞G(θ) = 0. Then, it suffices to show G is strictly decreasing on (0,∞),
which will imply G(θ) > 0 for all θ > 0. We have

∂

∂θ
G(θ) = ϕ(θ)− 2ϕ(θ) · Φ(θ) + 2θ · ϕ(θ)2,

where we substituted −θ · ϕ(θ) for ϕ′(θ) (which is a well-known identity for the standard normal pdf, and can be
verified by computation). Then,

G′(θ) < 0 ⇐⇒ ϕ(θ)− 2ϕ(θ) · Φ(θ) + 2θ · ϕ(θ)2 < 0 ⇐⇒ 1/2 < −θ · ϕ(θ) + Φ(θ)

Note that the RHS of the last inequality is equal to 1/2 when θ = 0. Thus, we can show this last inequality by taking
the derivative of the RHS −θ · ϕ(θ) + Φ(θ) and showing that it is positive.

∂

∂θ
− θ · ϕ(θ) + Φ(θ) = −ϕ(θ)− θϕ′(θ) + ϕ(θ) = −θϕ′(θ) = θ2ϕ(θ) > 0,

where we again use the identity ϕ′(θ) = −θ · ϕ(θ). Thus, G′(θ) < 0 for all θ > 0 meaning G(θ) is positive on all of
(0,∞).

Problem 4 (2019 May, # 3). n1 people are given treatment 1 and n2 people are given treatment 2. Let X1 be the number of
people on treatment 1 who respond favorably to the treatment and let X2 be the number of people on treatment 2 who respond
favorably. Assume that X1 ∼ Binomial(n1, p1), and X2 ∼ Binomial(n2, p2). Let ψ = p1 − p2.
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(i) Find the maximum likelihood estimator ψ̂ of ψ.

(ii) Find the Fisher information matrix I(p1, p2).

(iii) Use the delta method to find the asymptotic standard error of ψ̂.

Solution

(i) The MLE of p1 is X1/n1 so that by functional invariance of MLE, ψ̂ = X1

n1
− X2

n2
.

(ii) The log-likelihood is (up to terms not containing p1, p2):

X1 log(p1) + (n1 −X1) log(1− p1) +X2 log(p2) + (n2 −X2) log(1− p2).

Next, we consider the second-order partials of this expression. The mixed partials clearly vanish. And we have

−E
[
∂2

∂2p21
X1 log(p1) + (n1 −X1) log(1− p1)

]
= E

[
X1

p21
+
n1 −X1

(1− p1)2

]
=
n1
p1

+
n1

1− p1
.

By symmetry, the univariate Fisher information w.r.t. p2 is n2

p2
+ n2

1−p2
. Thus,

I(p1, p2) =

[n1

p1
+ n1

1−p1
0

0 n2

p2
+ n2

1−p2

]
.

(iii) By multivariate CLT we have for n1 = n2 = n,

√
n

((
X1/n
X2/n

)
−
(
p1
p2

))
d−→ N

(
0,
(
p1(1− p1) 0

0 p2(1− p2)

))
.

Next, The function g(p1, p2) = p1 − p2 has gradient ∇g = (1,−1). Then, by the delta method, the asymptotic standard
error of ψ̂ will be

(∇g)T
(
p1(1− p1) 0

0 p2(1− p2)

)
(∇g) = p1(1− p1) + p2(1− p2).

Remark 1.1. We could have also appealed to Cramer’s theorem instead of multivariate CLT as the asymptotic covariance
matrix is the inverse of I(p1, p2).

Problem 5 (2019 May, # 6). Denote by ζ̂n the MLE of ζ = p(1− p) based on n i.i.d. samples from Binomial(1, p). Denote by p0 the
true value of p.

(a) If p0 ̸= 1/2, find the limiting (non-degenerate) distribution of ζ̂n, with proper normalization.

(b) Derive the asymptotic distribution of ζ̂n, when p0 = 1/2.

Solution

(i) Let X1, . . . , Xn
i.i.d.∼ Binomial(1, p). By functional invariance of MLE, ζ̂n = Xn · (1−Xn). Then, since g(p) = p(1− p) has

derivative g′(p) = 1− 2p and √
n(Xn − p)

d−→ N(0, 1), by the delta method,
√
n(ζ̂ − p(1− p))

d−→ N(0, p(1− p) · (1− 2p)2).

(ii) Since g′′(p) = −2 ̸= 0, second-order delta method gives n(ζ̂n − 1/4)
d−→ − 1

4 · χ2
1.

Problem 6 (2019 September, # 3). Suppose that Xn and Yn are independent random variables, where Xn is asymptotically
normal with mean 4 and standard deviation 1/

√
n (i.e., √n(Xn − 4)

d−→ N(0, 1)) and Yn is asymptotically normal with mean 3 and
standard deviation 2/

√
n. Use the delta method to get an approximate mean and standard deviation of Yn/Xn.
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Solution
Since Xn, Yn are independent, we have

√
n

((
Xn

Yn

)
−
(
4
3

))
d−→ N

(
02,

(
1 0
0 4

))
.

Let g(x, y) = y/x which has gradient ∇g(x, y) = (−y/x2, 1/x). Then, the asymptotic variance of g(Xn, Yn) is

∇g(4, 3)T
(
1 0
0 4

)
∇g(4, 3) = (3/16)2 + 1/4 = 73/256.

Thus √
n(Yn/Xn − 3/4)

d−→ N (0, 73/256) by delta method.

Problem 7 (2019 September, # 5). Let X1, . . . , Xn be the number of accidents at an important intersection in the past n years.
We are interested in estimating the probability of zero accidents next year. We model the Xi’s as independent random variables
distributed according to a Poisson distribution with mean λ.

(i) Let q(λ) be the probability that there will be no accidents next year. Find an unbiased and consistent estimator of q(λ).

(ii) Compute the maximum likelihood estimator of q(λ) and derive its asymptotic distribution. Compare this estimator with
the one obtained in (i).

Solution

(i) 1
n

∑n
i=1 111{Xi = 0} is clearly unbiased and consistent by WLLN.

(ii) q(λ) = e−λ so by functional invariance of MLE the MLE of q(λ) is exp(−Xn). By delta method,
√
n(exp(−Xn)− exp(−λ)) d−→ N (0, λe−2λ).

The asymptotic variance of the estimator from (i) is λ by CLT which is always larger than λe−2λ. Thus, from the
perspective of comparing asymptotic variances, the MLE is better.

Problem 8 (2020 May, # 8). Let X1, . . . , Xn be i.i.d. Bernoulli(p) random sample, i.e. P (Xi = 1) = 1− P (Xi = 0) = p, p ∈ (0, 1).
Further, let θ = Var(Xi).

(i) Find θ̂, the maximum likelihood estimator of θ.

(ii) Show that θ̂ is asymptotically normal when p ̸= 1/2 and give the asymptotic variance.

(iii) When p = 1/2, derive a non-degenerated asymptotic distribution of θ̂ with an appropriate normalization. Hint: try relating θ̂
to the statistic (Xn − 1/2)2.

Solution

(i) By functional invariance of MLE, θ̂ = Xn · (1−Xn).

(ii) By delta method, θ̂ is asymptotically normal with asymptotic variance p(1− p) · (1− 2p)2.

(iii) Second-order delta method gives n(Xn · (1−Xn)−1/4)
d−→ − 1

4 ·χ
2
1, which is derived by taking Taylor expansion of the

function g(Xn) := Xn · (1−Xn) and then taking limits giving us (as suggested in the hint) the limit of n(Xn − 1/2)2

which is 1
4 · χ2

1 by CLT.

Problem 9 (2020 May, # 9). Let X1, . . . , X2n be an i.i.d. random sample with common pdf f(x) = 1
λe

− 1
λx for x > 0. Consider the

three estimators λ̂1 = 1
n

∑n
i=1Xi, λ̂2 = 1

n

∑2n
i=n+1Xi, and λ̂ = 1

2n

∑2n
i=1Xi.

(i) Show that T1 = λ̂1λ̂2 is an unbiased and consistent estimator of λ2.
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(ii) Show that T2 = λ̂2 is consistent for λ2, but not unbiased.

(iii) Derive the asymptotic distribution of the estimators T1 and T2. Which one is more efficient asymptotically?

Solution

(i) The common pdf is exponential with mean λ. Thus, T1 = λ̂1λ̂2 is an unbiased (by the independence of λ̂1 and λ̂2)
and consistent (by WLLN) estimator of λ2.

(ii) By WLLN T2 = λ̂2 is consistent. But, it’s biased as

E[λ̂2] =
1

4n2

(2n)2∑
i,j=1

E[XiXj ] =
1

4n2
(
(4n2 − 2n) · λ2 + 2n · (λ2 + λ)

)
= λ2 +

1

2n
· λ.

(iii) Multiviariate delta method gives √
2n(T1 − λ2)

d−→ N (0, 2λ4).

On the other hand, ordinary delta method gives for T2,
√
2n(T2 − λ2)

d−→ N (0, 4λ4).

Thus, purely in terms of asymptotic variance, T1 is more efficient.

Problem 10 (2020 September, # 6). Suppose (X1, . . . , Xn) are i.i.d. from a Normal distribution with EXi = Var(Xi) = θ, where
θ > 0 is unknown.

(a) Find the MLE for θ explicitly.

(b) Find the asymptotic distribution of your MLE.

Solution

(a) The log-likelihood is

L(θ) = −n
2
log(2πθ)− 1

2θ

n∑
i=1

(Xi − θ)2,

which has derivative
L′(θ) = − n

2θ
+

1

2θ2

n∑
i=1

X2
i − n

2
.

Setting L′(θ) = 0, we get the quadratic equation θ2 + θ = Tn with Tn := n−1
∑n

i=1X
2
i . This has nonnegative root

θ̂ =
−1 +

√
1 + 4Tn
2

.

It’s straightforward to further verify that L′′(θ̂) < 0.

(b) We proceed by delta method. We first have E[X2
1 ] = θ2 + θ and Var(X2

1 ) = 4θ3 + 2θ2. Thus, by CLT
√
n(Tn − θ2 − θ)

d−→ N (0, 4θ3 + 2θ2).

Let g(t) := −1+
√
1+4t

2 for t > 0, which satisfies g′(θ2 + θ) = 1
2θ+1 . Thus, delta method gives

√
n(θ̂ − θ)

d−→ N
(
0,

4θ3 + 3θ2

(1 + 2θ)2

)
= N

(
0,

2θ2

1 + 2θ

)
.
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Remark 1.2. Since in part (a), you had to find the second derivative L′′(θ), it could be faster to compute the Fisher
information which is

In(θ) =
n(2θ + 1)

2θ2
.

Then, the asymptotic normality of MLE’s (noting all standard regularity conditions hold here) directly gives us the same
convergence as above since I1(θ)

−1 = 2θ2/(2θ + 1).

Problem 11 (2021 May, # 3). A random sample X1, . . . , Xn is drawn from a population with p.d.f.

fθ(x) =
1

2
(1 + θx), x ∈ [−1, 1],

and fθ(x) = 0 if x ̸∈ [−1, 1], where θ ∈ [−1, 1] is the unknown parameter.

1. Find an unbiased estimator of θ.

2. Is the estimator in (i) consistent? Provide a justification for your answer.

Solution

(i) E[X] =
∫ 1

−1
1
2 (1 + θx) · x dx = θ

3 . Thus, θ̂ := 3 ·Xn is an unbiased estimator of θ.

(ii) Yes, θ̂ is consistent by LLN.

Problem 12 (2021 May, # 5). Let X and Y be a pair of random variables with the following distributional specification. P (Y =
1) = 1− P (Y = 0) = α where α ∈ (0, 1) and X|Y = 0 ∼ N(0, σ2) and X|Y = 1 ∼ N(µ, σ2).

1. Find the conditional distribution of Y given X, i.e. P (Y = 1|X = x).

2. Suppose that we have an i.i.d. random sample from this population, i.e. we observe i.i.d. copies (Xi, Yi), i = 1, . . . , n. Write
down the likelihood function and find maximum likelihood estimators α̂n, µ̂n and σ̂2

n of α, µ, and σ2.

3. What are the asymptotic distributions of α̂n, µ̂n, and σ̂2
n (properly standardized)?

Solution

(i) We have

P(Y = 1|X ∈ [x− h, x+ h]) =
P(X ∈ [x− h, x+ h] ∩ Y = 1)

P(X ∈ [x− h, x+ h])

=
P(X ∈ [x− h, x+ h]|Y = 1) · P(Y = 1)

P(X ∈ [x− h, x+ h]|Y = 1) · P(Y = 1) + P(X ∈ [x− h, x+ h]|Y = 0) · P(Y = 0)
.

Dividing the numerator and denominator on the RHS above by 2h and taking the limit as h→ 0, we obtain

P(Y = 1|X = x) =
α · exp(−(x− µ)2/(2σ2))

α · exp(−(x− µ)2/(2σ2)) + (1− α) · exp(−x2/(2σ2))
=

α

α+ (1− α) exp(xµ/σ2 − µ2/(2σ2)
.

Thus, Y |X = x is a Bernoulli with the above parameter.

(ii) We have likelihood

L(α, µ, σ2|X,Y ) =

n∏
i=1

1√
2πσ2

e−
(Xi−µ·Yi)

2

2σ2 · αYi(1− α)1−Yi

=
1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑
i=1

(Xi − µYi)
2

)
· α

∑n
i=1 Yi(1− α)n−

∑n
i=1 Yi =⇒

log(L) ∝ −n
2
log(σ2)− 1

2σ2

n∑
i=1

(Xi − µYi)
2 +

(
n∑

i=1

Yi

)
log(α) +

(
n−

n∑
i=1

Yi

)
log(1− α).
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We see that for any value of µ, σ2, the log-likelihood is maximized in terms of α at α̂ := 1
n

∑n
i=1 Yi. Similarly, for any

values of σ2, α, the log-likelihood is maximized in terms of µ at µ̂ =
∑n

i=1 YiXi∑n
i=1 Y 2

i
. Then, the log-likelihood is further

maximized in terms of σ2 at σ̂2 := 1
n

∑n
i=1(Xi − µ̂ · Yi)2.

(iii) We have

(a)
√
n(α̂n−α)√
α(1−α)

d−→ N (0, 1) by CLT.

(b) By WLLN, we have α̂n
d−→ α. Next, by Slutsky and another WLLN, we have since 1

n

∑n
i=1 Y

2
i = 1

n

∑n
i=1 Yi = α̂n,

µ̂n =
1
n

∑n
i=1 Yi ·Xi

1
n

∑n
i=1 Y

2
i

d−→ 1

α
· E[Y1 ·X1] = µ.

Next, we have

Var(Y1 ·X1) = E[Y 2
1 X

2
1 ]− (E[Y1X1])

2 = α(σ2 + µ2)− α2µ2 = α · σ2 + αµ2 − α2µ2.

So, CLT on the i.i.d. sum
∑n

i=1 YiXi gives us
√
n
(
1
n

∑n
i=1 Yi ·Xi − α · µ

)√
Var(Y1 ·X1)

d−→ N (0, 1).

Then, by Slutsky, we have √
n (µ̂n − µ)√

Var(Y1 ·X1)/α

d−→ N (0, 1).

(c) First, it is clear that the value of σ̂2
n does not depend on µ since it is location-invariant. Thus, let us assume

WLOG that µ = 0. Now, we have

σ̂2
n =

1

n

n∑
i=1

X2
i − 2

n

n∑
i=1

µ̂n ·Xi · Yi +
µ̂2
n

n

n∑
i=1

Y 2
i

=
1

n

n∑
i=1

X2
i − 1

n
∑n

i=1 Y
2
i

(
n∑

i=1

Xi · Yi

)2

=
1

n

n∑
i=1

X2
i −

(
1
n

∑n
i=1Xi · Yi

)2
α̂n

We will use multivariate delta method to proceed. The above RHS is a function of the vector(
1
n

∑n
i=1X

2
i ,

1
n

∑n
i=1XiYi,

1
n

∑n
i=1 Yi

)
. This vector has expectation:

E[X2] = (1− α) · σ2 + α · (σ2 + µ2) = σ2 + αµ2 = σ2

E[XY ] = α · µ = 0

E[Y ] = α.

Note that we simplified the first two expectations above by assuming µ = 0. Next, let the function g be defined
by

g(a, b, c) = a− b2

c
.

Then, g has first-order partials at the vector (a, b, c) = (σ2, 0, α):

∂

∂a
g(a, b, c) = 1

∂

∂b
g(a, b, c)|a=σ2,b=0,c=α = 0

∂

∂c
g(a, b, c)|a=σ2,b=0,c=α = 0.
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Then, we will have by delta method

√
n

(
g

(
1

n

n∑
i=1

X2
i ,

1

n

n∑
i=1

XiYi,
1

n

n∑
i=1

Yi

)
− g(σ2, 0, α)

)
d−→ N (0, τ2),

where we note g(σ2, 0, α) = σ2 and where (because we already established that two of the first-order partials of
g vanish):

τ2 := Var(X2) ·
(
∂

∂a
g(a, b, c)|(a,b,c)=(σ2,0,α)

)2

= Var(X2).

Thus, it remains to computeVar(X2). We have, again using the fact thatµ = 0 so thatX ∼ N (0, σ2)unconditional
of Y ,

Var(X2) = E[X4]− E[X2]2 = 3σ4 − σ4 = 2σ4.

Thus, √n(σ̂2
n − σ2)

d−→ N (0, 2σ4).

Problem 13 (2021 May, # 6). Suppose X1, . . . , Xn are independent, with Xi ∼ N
(
θ
i , 1
)
. Here, θ ∈ R is an unknown parameter.

(i) Find an unbiased estimator θ̂n for θ which depends on the entire data.

(ii) Find asymptotic non-degenerate distribution of your estimator, i.e. dn(θ̂n − θ) converges to a non-degenerate distribution.

(iii) Suppose that we impose a normal prior θ ∼ N(0, τ), where τ > 0 is an known constant. Find the posterior distribution of θ
given data X1, . . . , Xn.

Solution

(i) Since E[Xi] = θ/i, we have θ̂n :=
∑n

i=1 i ·Xi/n is an unbiased estimator for θ.

(ii) We have θ̂n ∼ N (θ,
∑n

i=1 i
2/n2). Thus,

θ̂n − θ√∑n
i=1 i

2/n2

d−→ N (0, 1).

(iii) We have

π(θ|X1, . . . , Xn) ∝ π(θ)L(X1, . . . , Xn|θ)

∝ e−θ2/(2τ) · exp
(
−
∑n

i=1(Xi − θ/i)2

2

)
∝ exp

(
−θ

2

2

(
1

τ
+

n∑
i=1

1

i2

)
+ θ

n∑
i=1

Xi/i

)
.

Completing the square in terms of θ on the RHS, we have

θ|X1, . . . , Xn ∼ N

 ∑n
i=1Xi/i

1/τ +
∑n

i=1 1/i
2
,

(
1/τ +

n∑
i=1

1/i2

)−1
 .

Problem 14 (2021 Sept, # 4). Suppose {Ui}i≥1
i.i.d.∼ U(0, θ), for some θ > 0.

1. Show that Tn := (
∏n

i=1 Ui)
1/n converges in probability to a constant, and find this constant.

2. Find a function of Tn that is a consistent estimator for θ.

3. Find constants an and bn such that an(Tn − bn) converges to a non-degenerate distribution.
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Solution

(1) We have log(Tn) =
1
n

∑n
i=1 log(Ui) which goes to E[log(Ui)] by law of large numbers. More explicitly, this expectation

is ∫ θ

0

log(u)

θ
du =

u log(u)− u

θ

∣∣∣∣∣
θ

0

= log(θ)− 1.

Thus, Tn P−→ exp(log(θ)− 1).

(2) By inverting the formula in (1), we have exp(log(Tn) + 1) is a consistent estimator for θ.

(3) Since √
n(log(Tn)− (log(θ)− 1)) goes to a normal distribution by CLT, we have by Delta method that

√
n(Tn − exp(log(θ)− 1)),

goes to a non-degenerate distribution where we know the variance term is positive since ∂
∂θ exp(log(θ)− 1) > 0 for

all θ > 0.
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