Review Session 8 - Solutions

1 Solutions

1.1 Previous Core Competency Problems

Problem 1 (2018 Summer Practice, # 2). Suppose that X_1, \ldots, X_n are i.i.d. $\exp(1/\mu)$, where $\mathbb{E}(X_1) = \mu > 0$.

- (i) Find the mean and variance of $\overline{X}_n = \sum_{i=1}^n X_i/n$. Hence, find the asymptotic distribution of \overline{X}_n (properly standardized).
- (ii) Let $T = \log \overline{X}_n$. Find the corresponding asymptotic distribution of T (properly standardized).
- (iii) How can the asymptotic distribution of T be used to construct an approximate $(1-\alpha)$ confidence interval (CI) for μ ? Explain your answer and give the desired CI.

Solution

We have $\mathbb{E}[\overline{X}_n] = \mu$ and $\mathrm{Var}(\overline{X}_n) = \frac{\mu^2}{n}$. Standardized, this is

$$\frac{\overline{X}_n - \mu}{\mu/\sqrt{n}} = \sqrt{n} \left(\frac{\overline{X}_n}{\mu} - 1 \right) \xrightarrow{\mathrm{d}} N(0, 1)$$

by CLT so that $\frac{\log(\overline{X}_n) - \log(\mu)}{\mu/\sqrt{n}} \stackrel{\mathsf{d}}{\to} N(0, 1/\mu^2)$ by delta method. This gives approximate $(1-\alpha)$ CI for $\log \mu$

$$\log(\overline{X}_n) - z_{1-\alpha/2}/\sqrt{n} < \log \mu < \log(\overline{X}_n) + z_{1-\alpha/2}/\sqrt{n}$$

whence we can construct a $(1-\alpha)$ CI for μ by taking $\exp(\cdot)$ of both sides.

Problem 2 (2018 Summer Practice, # 5). Suppose that Y_1, \dots, Y_n are i.i.d Poisson (λ) , $\lambda > 0$ unknown. Assume that n is even, i.e., n = 2k for some integer k. Consider

$$\hat{\lambda} = \frac{1}{2k} \sum_{i=1}^{k} (Y_{2i} - Y_{2i-1})^2.$$

- (a) Is $\hat{\lambda}$ an unbiased estimator of λ (show your steps)?
- (b) Is $\hat{\lambda}$ a consistent estimator of λ , as $k \to \infty$ (show your steps)?

Solution

 $\hat{\lambda}$ is unbiased since

$$\mathbb{E}[\hat{\lambda}] = \frac{1}{2k} \sum_{i=1}^{k} \mathbb{E}[Y_{2i}^2] - 2\mathbb{E}[Y_{2i}Y_{2i-1}] + \mathbb{E}[Y_{2i-1}^2] = \frac{1}{2k} \sum_{i=1}^{k} 2(\lambda + \lambda^2) - 2\lambda^2 = \lambda$$

It is also consistent since for some function $f(\lambda)$,

$$\operatorname{Var}(\hat{\lambda}) = \frac{1}{4k^2} \sum_{i=1}^{k} \operatorname{Var}(Y_{2i}^2) + 4 \operatorname{Var}(Y_{2i}Y_{2i-1}) + \operatorname{Var}(Y_{2i-1}^2) = \frac{1}{4k} f(\lambda) \xrightarrow{k \to \infty} 0$$

Problem 3 (2018 September, # 6). Suppose that X_1, X_2, \dots, X_n are i.i.d. $N(\theta, 1)$, where $\theta \in \mathbb{R}$ is unknown. Let $\psi = \mathbb{P}_{\theta}(X_1 > 0)$.

- (a) Find the maximum likelihood estimator $\hat{\psi}$ of ψ .
- (b) Find an approximate 95% confidence interval for ψ .
- (c) Let $Y_i = \mathbf{1}\{X_i > 0\}$, for i = 1, ..., n. Define $\tilde{\psi} = (1/n) \sum_{i=1}^n Y_i$. Show that $\tilde{\psi}$ is a consistent estimator of ψ .
- (d) Find the asymptotic distribution of both the estimators. Which estimator of ψ , $\hat{\psi}$ or $\tilde{\psi}$, is more preferable in this model and why?

- (a) Let $\Phi(\cdot)$ be the standard normal cdf. Then, $\psi = 1 \Phi(-\theta)$ so that the MLE of ψ is $1 \Phi(-\hat{\theta})$ by functional invariance of the MLE.
- (b) We have $\overline{X} \sim \mathcal{N}(\theta, 1/n)$ so that w.p. at least 1α :

$$\frac{z_{\alpha/2}}{\sqrt{n}} - \overline{X} < -\theta < \frac{z_{1-\alpha/2}}{\sqrt{n}} - \overline{X}$$

Since $\Phi(\cdot)$ is monotone, this implies

$$1 - \Phi\left(\frac{z_{\alpha/2}}{\sqrt{n}} - \overline{X}\right) > 1 - \Phi(-\hat{\theta}) > 1 - \Phi\left(\frac{z_{1-\alpha/2}}{\sqrt{n}} - \overline{X}\right)$$

which is a $1 - \alpha$ C.I. for ψ .

- (c) This is just Law of Large Numbers.
- (d) From CLT, we have $\sqrt{n}(\tilde{\psi}-\psi) \stackrel{d}{\to} N(0,\sigma^2)$ where the asymptotic variance σ^2 of $\tilde{\psi}$ is

$$\mathbb{E}[\mathbf{1}\{X_i > 0\}] - \mathbb{E}[\mathbf{1}\{X_i > 0\}]^2 = (1 - \Phi(-\theta)) - (1 - \Phi(-\theta))^2 = \Phi(-\theta)(1 - \Phi(-\theta)).$$

The asymptotic variance of $1-\Phi(-\hat{\theta})$ is $\phi(-\theta)^2$ by delta method where $\phi(\cdot)$ is the standard normal pdf. Observe at $\theta=0$ that

$$\frac{1}{2\pi} = \phi(0)^2 < \frac{1}{4} = (1 - \Phi(0)) \cdot \Phi(0)$$

We claim this is true for general θ as well. By symmetry of the transformation $\theta \mapsto -\theta$ it suffices to show $\phi(\theta)^2 < (1-\Phi(\theta))\cdot\Phi(\theta)$ for positive θ . Define $G(\theta):=(1-\Phi(\theta))\cdot\Phi(\theta)-\phi(\theta)^2$, which is just the difference between the two asymptotic variances. We clearly have $\lim_{\theta\to\infty}G(\theta)=0$. Then, it suffices to show G is strictly decreasing on $(0,\infty)$, which will imply $G(\theta)>0$ for all $\theta>0$. We have

$$\frac{\partial}{\partial \theta}G(\theta) = \phi(\theta) - 2\phi(\theta) \cdot \Phi(\theta) + 2\theta \cdot \phi(\theta)^2,$$

where we substituted $-\theta \cdot \phi(\theta)$ for $\phi'(\theta)$ (which is a well-known identity for the standard normal pdf, and can be verified by computation). Then,

$$G'(\theta) < 0 \iff \phi(\theta) - 2\phi(\theta) \cdot \Phi(\theta) + 2\theta \cdot \phi(\theta)^2 < 0 \iff 1/2 < -\theta \cdot \phi(\theta) + \Phi(\theta)$$

Note that the RHS of the last inequality is equal to 1/2 when $\theta=0$. Thus, we can show this last inequality by taking the derivative of the RHS $-\theta \cdot \phi(\theta) + \Phi(\theta)$ and showing that it is positive.

$$\frac{\partial}{\partial \theta} - \theta \cdot \phi(\theta) + \Phi(\theta) = -\phi(\theta) - \theta \phi'(\theta) + \phi(\theta) = -\theta \phi'(\theta) = \theta^2 \phi(\theta) > 0,$$

where we again use the identity $\phi'(\theta) = -\theta \cdot \phi(\theta)$. Thus, $G'(\theta) < 0$ for all $\theta > 0$ meaning $G(\theta)$ is positive on all of $(0, \infty)$.

Problem 4 (2019 May, # 3). n_1 people are given treatment 1 and n_2 people are given treatment 2. Let X_1 be the number of people on treatment 1 who respond favorably to the treatment and let X_2 be the number of people on treatment 2 who respond favorably. Assume that $X_1 \sim \text{Binomial}(n_1, p_1)$, and $X_2 \sim \text{Binomial}(n_2, p_2)$. Let $\psi = p_1 - p_2$.

- (i) Find the maximum likelihood estimator $\hat{\psi}$ of ψ .
- (ii) Find the Fisher information matrix $I(p_1, p_2)$.
- (iii) Use the delta method to find the asymptotic standard error of $\hat{\psi}$.

- (i) The MLE of p_1 is X_1/n_1 so that by functional invariance of MLE, $\hat{\psi} = \frac{X_1}{n_1} \frac{X_2}{n_2}$.
- (ii) The log-likelihood is (up to terms not containing p_1, p_2):

$$X_1 \log(p_1) + (n_1 - X_1) \log(1 - p_1) + X_2 \log(p_2) + (n_2 - X_2) \log(1 - p_2).$$

Next, we consider the second-order partials of this expression. The mixed partials clearly vanish. And we have

$$-\mathbb{E}\left[\frac{\partial^2}{\partial^2 p_1^2} X_1 \log(p_1) + (n_1 - X_1) \log(1 - p_1)\right] = \mathbb{E}\left[\frac{X_1}{p_1^2} + \frac{n_1 - X_1}{(1 - p_1)^2}\right] = \frac{n_1}{p_1} + \frac{n_1}{1 - p_1}.$$

By symmetry, the univariate Fisher information w.r.t. p_2 is $\frac{n_2}{p_2} + \frac{n_2}{1-p_2}$. Thus,

$$I(p_1, p_2) = \begin{bmatrix} \frac{n_1}{p_1} + \frac{n_1}{1 - p_1} & 0\\ 0 & \frac{n_2}{p_2} + \frac{n_2}{1 - p_2} \end{bmatrix}.$$

(iii) By multivariate CLT we have for $n_1 = n_2 = n$,

$$\sqrt{n} \left(\begin{pmatrix} X_1/n \\ X_2/n \end{pmatrix} - \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} \right) \xrightarrow{\mathrm{d}} \mathcal{N} \left(\mathbf{0}, \begin{pmatrix} p_1(1-p_1) & 0 \\ 0 & p_2(1-p_2) \end{pmatrix} \right).$$

Next, The function $g(p_1, p_2) = p_1 - p_2$ has gradient $\nabla g = (1, -1)$. Then, by the delta method, the asymptotic standard error of $\hat{\psi}$ will be

$$(\nabla g)^T \begin{pmatrix} p_1(1-p_1) & 0 \\ 0 & p_2(1-p_2) \end{pmatrix} (\nabla g) = p_1(1-p_1) + p_2(1-p_2).$$

Remark 1.1. We could have also appealed to Cramer's theorem instead of multivariate CLT as the asymptotic covariance matrix is the inverse of $I(p_1, p_2)$.

Problem 5 (2019 May, # 6). Denote by $\hat{\zeta}_n$ the MLE of $\zeta = p(1-p)$ based on n i.i.d. samples from Binomial(1,p). Denote by p_0 the true value of p.

- (a) If $p_0 \neq 1/2$, find the limiting (non-degenerate) distribution of $\hat{\zeta}_n$, with proper normalization.
- (b) Derive the asymptotic distribution of $\hat{\zeta}_n$, when $p_0 = 1/2$.

Solution

(i) Let $X_1,\dots,X_n \overset{\text{i.i.d.}}{\sim}$ Binomial(1,p). By functional invariance of MLE, $\hat{\zeta}_n = \overline{X}_n \cdot (1-\overline{X}_n)$. Then, since g(p) = p(1-p) has derivative g'(p) = 1-2p and $\sqrt{n}(\overline{X}_n-p) \overset{\text{d}}{\to} N(0,1)$, by the delta method,

$$\sqrt{n}(\hat{\zeta} - p(1-p)) \xrightarrow{\mathsf{d}} N(0, p(1-p) \cdot (1-2p)^2).$$

(ii) Since $g''(p) = -2 \neq 0$, second-order delta method gives $n(\hat{\zeta}_n - 1/4) \xrightarrow{d} -\frac{1}{4} \cdot \chi_1^2$.

Problem 6 (2019 September, # 3). Suppose that X_n and Y_n are independent random variables, where X_n is asymptotically normal with mean 4 and standard deviation $1/\sqrt{n}$ (i.e., $\sqrt{n}(X_n-4) \stackrel{\mathsf{d}}{\to} N(0,1)$) and Y_n is asymptotically normal with mean 3 and standard deviation $2/\sqrt{n}$. Use the delta method to get an approximate mean and standard deviation of Y_n/X_n .

Since X_n, Y_n are independent, we have

$$\sqrt{n}\left(\begin{pmatrix} X_n \\ Y_n \end{pmatrix} - \begin{pmatrix} 4 \\ 3 \end{pmatrix}\right) \xrightarrow{\mathsf{d}} \mathcal{N}\left(\mathbf{0}_2, \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}\right).$$

Let g(x,y)=y/x which has gradient $\nabla g(x,y)=(-y/x^2,1/x)$. Then, the asymptotic variance of $g(X_n,Y_n)$ is

$$\nabla g(4,3)^T \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \nabla g(4,3) = (3/16)^2 + 1/4 = 73/256.$$

Thus $\sqrt{n}(Y_n/X_n-3/4) \xrightarrow{d} \mathcal{N}(0,73/256)$ by delta method.

Problem 7 (2019 September, # 5). Let X_1, \ldots, X_n be the number of accidents at an important intersection in the past n years. We are interested in estimating the probability of zero accidents next year. We model the X_i 's as independent random variables distributed according to a Poisson distribution with mean λ .

- (i) Let $q(\lambda)$ be the probability that there will be no accidents next year. Find an unbiased and consistent estimator of $q(\lambda)$.
- (ii) Compute the maximum likelihood estimator of $q(\lambda)$ and derive its asymptotic distribution. Compare this estimator with the one obtained in (i).

Solution

- (i) $\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}\{X_i=0\}$ is clearly unbiased and consistent by WLLN.
- (ii) $q(\lambda) = e^{-\lambda}$ so by functional invariance of MLE the MLE of $q(\lambda)$ is $\exp(-\overline{X}_n)$. By delta method,

$$\sqrt{n}(\exp(-\overline{X}_n) - \exp(-\lambda)) \xrightarrow{\mathsf{d}} \mathcal{N}(0, \lambda e^{-2\lambda}).$$

The asymptotic variance of the estimator from (i) is λ by CLT which is always larger than $\lambda e^{-2\lambda}$. Thus, from the perspective of comparing asymptotic variances, the MLE is better.

Problem 8 (2020 May, # 8). Let X_1, \ldots, X_n be i.i.d. Bernoulli(p) random sample, i.e. $P(X_i = 1) = 1 - P(X_i = 0) = p$, $p \in (0, 1)$. Further, let $\theta = \text{Var}(X_i)$.

- (i) Find $\hat{\theta}$, the maximum likelihood estimator of θ .
- (ii) Show that $\hat{\theta}$ is asymptotically normal when $p \neq 1/2$ and give the asymptotic variance.
- (iii) When p=1/2, derive a non-degenerated asymptotic distribution of $\hat{\theta}$ with an appropriate normalization. Hint: try relating $\hat{\theta}$ to the statistic $(\overline{X}_n-1/2)^2$.

Solution

- (i) By functional invariance of MLE, $\hat{\theta} = \overline{X}_n \cdot (1 \overline{X}_n)$.
- (ii) By delta method, $\hat{\theta}$ is asymptotically normal with asymptotic variance $p(1-p) \cdot (1-2p)^2$.
- (iii) Second-order delta method gives $n(\overline{X}_n\cdot(1-\overline{X}_n)-1/4)\stackrel{\mathrm{d}}{\to} -\frac{1}{4}\cdot\chi_1^2$, which is derived by taking Taylor expansion of the function $g(\overline{X}_n):=\overline{X}_n\cdot(1-\overline{X}_n)$ and then taking limits giving us (as suggested in the hint) the limit of $n(\overline{X}_n-1/2)^2$ which is $\frac{1}{4}\cdot\chi_1^2$ by CLT.

Problem 9 (2020 May, # 9). Let X_1,\ldots,X_{2n} be an i.i.d. random sample with common pdf $f(x)=\frac{1}{\lambda}e^{-\frac{1}{\lambda}x}$ for x>0. Consider the three estimators $\hat{\lambda}_1=\frac{1}{n}\sum_{i=1}^n X_i$, $\hat{\lambda}_2=\frac{1}{n}\sum_{i=n+1}^{2n} X_i$, and $\hat{\lambda}=\frac{1}{2n}\sum_{i=1}^{2n} X_i$.

(i) Show that $T_1 = \hat{\lambda}_1 \hat{\lambda}_2$ is an unbiased and consistent estimator of λ^2 .

- (ii) Show that $T_2 = \hat{\lambda}^2$ is consistent for λ^2 , but not unbiased.
- (iii) Derive the asymptotic distribution of the estimators T_1 and T_2 . Which one is more efficient asymptotically?

- (i) The common pdf is exponential with mean λ . Thus, $T_1 = \hat{\lambda}_1 \hat{\lambda}_2$ is an unbiased (by the independence of $\hat{\lambda}_1$ and $\hat{\lambda}_2$) and consistent (by WLLN) estimator of λ^2 .
- (ii) By WLLN $T_2 = \hat{\lambda}^2$ is consistent. But, it's biased as

$$\mathbb{E}[\hat{\lambda}^2] = \frac{1}{4n^2} \sum_{i,j=1}^{(2n)^2} \mathbb{E}[X_i X_j] = \frac{1}{4n^2} \left((4n^2 - 2n) \cdot \lambda^2 + 2n \cdot (\lambda^2 + \lambda) \right) = \lambda^2 + \frac{1}{2n} \cdot \lambda.$$

(iii) Multiviariate delta method gives

$$\sqrt{2n}(T_1 - \lambda^2) \xrightarrow{\mathsf{d}} \mathcal{N}(0, 2\lambda^4).$$

On the other hand, ordinary delta method gives for T_2 ,

$$\sqrt{2n}(T_2 - \lambda^2) \xrightarrow{\mathsf{d}} \mathcal{N}(0, 4\lambda^4).$$

Thus, purely in terms of asymptotic variance, T_1 is more efficient.

Problem 10 (2020 September, # 6). Suppose $(X_1, ..., X_n)$ are i.i.d. from a Normal distribution with $\mathbb{E}X_i = \text{Var}(X_i) = \theta$, where $\theta > 0$ is unknown.

- (a) Find the MLE for θ explicitly.
- (b) Find the asymptotic distribution of your MLE.

Solution

(a) The log-likelihood is

$$L(\theta) = -\frac{n}{2}\log(2\pi\theta) - \frac{1}{2\theta}\sum_{i=1}^{n}(X_i - \theta)^2,$$

which has derivative

$$L'(\theta) = -\frac{n}{2\theta} + \frac{1}{2\theta^2} \sum_{i=1}^{n} X_i^2 - \frac{n}{2}.$$

Setting $L'(\theta)=0$, we get the quadratic equation $\theta^2+\theta=T_n$ with $T_n:=n^{-1}\sum_{i=1}^n X_i^2$. This has nonnegative root

$$\hat{\theta} = \frac{-1 + \sqrt{1 + 4T_n}}{2}.$$

It's straightforward to further verify that $L''(\hat{\theta}) < 0$.

(b) We proceed by delta method. We first have $\mathbb{E}[X_1^2] = \theta^2 + \theta$ and $Var(X_1^2) = 4\theta^3 + 2\theta^2$. Thus, by CLT

$$\sqrt{n}(T_n - \theta^2 - \theta) \xrightarrow{\mathsf{d}} \mathcal{N}(0, 4\theta^3 + 2\theta^2).$$

Let $g(t):=\frac{-1+\sqrt{1+4t}}{2}$ for t>0, which satisfies $g'(\theta^2+\theta)=\frac{1}{2\theta+1}$. Thus, delta method gives

$$\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{\mathsf{d}} \mathcal{N}\left(0, \frac{4\theta^3+3\theta^2}{(1+2\theta)^2}\right) = \mathcal{N}\left(0, \frac{2\theta^2}{1+2\theta}\right).$$

Remark 1.2. Since in part (a), you had to find the second derivative $L''(\theta)$, it could be faster to compute the Fisher information which is

$$I_n(\theta) = \frac{n(2\theta + 1)}{2\theta^2}.$$

Then, the asymptotic normality of MLE's (noting all standard regularity conditions hold here) directly gives us the same convergence as above since $I_1(\theta)^{-1}=2\theta^2/(2\theta+1)$.

Problem 11 (2021 May, # 3). A random sample X_1, \ldots, X_n is drawn from a population with p.d.f.

$$f_{\theta}(x) = \frac{1}{2}(1+\theta x), x \in [-1, 1],$$

and $f_{\theta}(x) = 0$ if $x \notin [-1, 1]$, where $\theta \in [-1, 1]$ is the unknown parameter.

- 1. Find an unbiased estimator of θ .
- 2. Is the estimator in (i) consistent? Provide a justification for your answer.

Solution

- (i) $\mathbb{E}[X] = \int_{-1}^{1} \frac{1}{2} (1 + \theta x) \cdot x \, dx = \frac{\theta}{3}$. Thus, $\hat{\theta} := 3 \cdot \overline{X}_n$ is an unbiased estimator of θ .
- (ii) Yes, $\hat{\theta}$ is consistent by LLN.

Problem 12 (2021 May, # 5). Let X and Y be a pair of random variables with the following distributional specification. $P(Y=1)=1-P(Y=0)=\alpha$ where $\alpha\in(0,1)$ and $X|Y=0\sim N(0,\sigma^2)$ and $X|Y=1\sim N(\mu,\sigma^2)$.

- 1. Find the conditional distribution of Y given X, i.e. P(Y = 1 | X = x).
- 2. Suppose that we have an i.i.d. random sample from this population, i.e. we observe i.i.d. copies (X_i,Y_i) , $i=1,\ldots,n$. Write down the likelihood function and find maximum likelihood estimators $\hat{\alpha}_n,\hat{\mu}_n$ and $\hat{\sigma}_n^2$ of α,μ , and σ^2 .
- 3. What are the asymptotic distributions of $\hat{\alpha}_n$, $\hat{\mu}_n$, and $\hat{\sigma}_n^2$ (properly standardized)?

Solution

(i) We have

$$\mathbb{P}(Y = 1 | X \in [x - h, x + h]) = \frac{\mathbb{P}(X \in [x - h, x + h] \cap Y = 1)}{\mathbb{P}(X \in [x - h, x + h])}$$

$$= \frac{\mathbb{P}(X \in [x - h, x + h] | Y = 1) \cdot \mathbb{P}(Y = 1)}{\mathbb{P}(X \in [x - h, x + h] | Y = 1) \cdot \mathbb{P}(Y = 1) + \mathbb{P}(X \in [x - h, x + h] | Y = 0) \cdot \mathbb{P}(Y = 0)}.$$

Dividing the numerator and denominator on the RHS above by 2h and taking the limit as $h \to 0$, we obtain

$$\mathbb{P}(Y = 1 | X = x) = \frac{\alpha \cdot \exp(-(x - \mu)^2/(2\sigma^2))}{\alpha \cdot \exp(-(x - \mu)^2/(2\sigma^2)) + (1 - \alpha) \cdot \exp(-x^2/(2\sigma^2))} = \frac{\alpha}{\alpha + (1 - \alpha) \exp(x\mu/\sigma^2 - \mu^2/(2\sigma^2))}.$$

Thus, Y|X=x is a Bernoulli with the above parameter.

(ii) We have likelihood

$$L(\alpha, \mu, \sigma^{2}|X, Y) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(X_{i} - \mu \cdot Y_{i})^{2}}{2\sigma^{2}}} \cdot \alpha^{Y_{i}} (1 - \alpha)^{1 - Y_{i}}$$

$$= \frac{1}{(2\pi\sigma^{2})^{n/2}} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \mu Y_{i})^{2}\right) \cdot \alpha^{\sum_{i=1}^{n} Y_{i}} (1 - \alpha)^{n - \sum_{i=1}^{n} Y_{i}} \implies \log(L) \propto -\frac{n}{2} \log(\sigma^{2}) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \mu Y_{i})^{2} + \left(\sum_{i=1}^{n} Y_{i}\right) \log(\alpha) + \left(n - \sum_{i=1}^{n} Y_{i}\right) \log(1 - \alpha).$$

We see that for any value of μ , σ^2 , the log-likelihood is maximized in terms of α at $\hat{\alpha} := \frac{1}{n} \sum_{i=1}^n Y_i$. Similarly, for any values of σ^2 , α , the log-likelihood is maximized in terms of μ at $\hat{\mu} = \frac{\sum_{i=1}^n Y_i X_i}{\sum_{i=1}^n Y_i^2}$. Then, the log-likelihood is further maximized in terms of σ^2 at $\hat{\sigma}^2 := \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu} \cdot Y_i)^2$.

(iii) We have

(a)
$$\frac{\sqrt{n}(\hat{\alpha}_n - \alpha)}{\sqrt{\alpha(1-\alpha)}} \xrightarrow{\mathsf{d}} \mathcal{N}(0,1)$$
 by CLT.

(b) By WLLN, we have $\hat{\alpha}_n \xrightarrow{\mathsf{d}} \alpha$. Next, by Slutsky and another WLLN, we have since $\frac{1}{n} \sum_{i=1}^n Y_i^2 = \frac{1}{n} \sum_{i=1}^n Y_i = \hat{\alpha}_n$,

$$\hat{\mu}_n = \frac{\frac{1}{n} \sum_{i=1}^n Y_i \cdot X_i}{\frac{1}{n} \sum_{i=1}^n Y_i^2} \xrightarrow{\mathsf{d}} \frac{1}{\alpha} \cdot \mathbb{E}[Y_1 \cdot X_1] = \mu.$$

Next, we have

$$Var(Y_1 \cdot X_1) = \mathbb{E}[Y_1^2 X_1^2] - (\mathbb{E}[Y_1 X_1])^2 = \alpha(\sigma^2 + \mu^2) - \alpha^2 \mu^2 = \alpha \cdot \sigma^2 + \alpha \mu^2 - \alpha^2 \mu^2.$$

So, CLT on the i.i.d. sum $\sum_{i=1}^{n} Y_i X_i$ gives us

$$\frac{\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\cdot X_{i}-\alpha\cdot\mu\right)}{\sqrt{\operatorname{Var}(Y_{1}\cdot X_{1})}}\overset{\mathsf{d}}{\to}\mathcal{N}(0,1).$$

Then, by Slutsky, we have

$$\frac{\sqrt{n}(\hat{\mu}_n - \mu)}{\sqrt{\operatorname{Var}(Y_1 \cdot X_1)}/\alpha} \xrightarrow{\mathsf{d}} \mathcal{N}(0, 1).$$

(c) First, it is clear that the value of $\hat{\sigma}_n^2$ does not depend on μ since it is location-invariant. Thus, let us assume WLOG that $\mu=0$. Now, we have

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \frac{2}{n} \sum_{i=1}^n \hat{\mu}_n \cdot X_i \cdot Y_i + \frac{\hat{\mu}_n^2}{n} \sum_{i=1}^n Y_i^2$$

$$= \frac{1}{n} \sum_{i=1}^n X_i^2 - \frac{1}{n \sum_{i=1}^n Y_i^2} \left(\sum_{i=1}^n X_i \cdot Y_i \right)^2$$

$$= \frac{1}{n} \sum_{i=1}^n X_i^2 - \frac{\left(\frac{1}{n} \sum_{i=1}^n X_i \cdot Y_i\right)^2}{\hat{\alpha}_n}$$

We will use multivariate delta method to proceed. The above RHS is a function of the vector $(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2},\frac{1}{n}\sum_{i=1}^{n}X_{i}Y_{i},\frac{1}{n}\sum_{i=1}^{n}Y_{i})$. This vector has expectation:

$$\begin{split} \mathbb{E}[X^2] &= (1-\alpha) \cdot \sigma^2 + \alpha \cdot (\sigma^2 + \mu^2) = \sigma^2 + \alpha \mu^2 = \sigma^2 \\ \mathbb{E}[XY] &= \alpha \cdot \mu = 0 \\ \mathbb{E}[Y] &= \alpha. \end{split}$$

Note that we simplified the first two expectations above by assuming $\mu=0$. Next, let the function g be defined by

$$g(a,b,c) = a - \frac{b^2}{c}.$$

Then, g has first-order partials at the vector $(a, b, c) = (\sigma^2, 0, \alpha)$:

$$\begin{split} \frac{\partial}{\partial a}g(a,b,c) &= 1\\ \frac{\partial}{\partial b}g(a,b,c)|_{a=\sigma^2,b=0,c=\alpha} &= 0\\ \frac{\partial}{\partial c}g(a,b,c)|_{a=\sigma^2,b=0,c=\alpha} &= 0. \end{split}$$

Then, we will have by delta method

$$\sqrt{n}\left(g\left(\frac{1}{n}\sum_{i=1}^n X_i^2, \frac{1}{n}\sum_{i=1}^n X_iY_i, \frac{1}{n}\sum_{i=1}^n Y_i\right) - g(\sigma^2, 0, \alpha)\right) \xrightarrow{\mathsf{d}} \mathcal{N}(0, \tau^2),$$

where we note $g(\sigma^2, 0, \alpha) = \sigma^2$ and where (because we already established that two of the first-order partials of g vanish):

$$\tau^2 := \operatorname{Var}(X^2) \cdot \left(\frac{\partial}{\partial a} g(a, b, c)|_{(a, b, c) = (\sigma^2, 0, \alpha)} \right)^2 = \operatorname{Var}(X^2).$$

Thus, it remains to compute $\mathrm{Var}(X^2)$. We have, again using the fact that $\mu=0$ so that $X\sim\mathcal{N}(0,\sigma^2)$ unconditional of Y,

$$Var(X^2) = \mathbb{E}[X^4] - \mathbb{E}[X^2]^2 = 3\sigma^4 - \sigma^4 = 2\sigma^4.$$

Thus, $\sqrt{n}(\hat{\sigma}_n^2 - \sigma^2) \xrightarrow{d} \mathcal{N}(0, 2\sigma^4)$.

Problem 13 (2021 May, # 6). Suppose X_1, \ldots, X_n are independent, with $X_i \sim N\left(\frac{\theta}{i}, 1\right)$. Here, $\theta \in \mathbb{R}$ is an unknown parameter.

- (i) Find an unbiased estimator $\hat{\theta}_n$ for θ which depends on the entire data.
- (ii) Find asymptotic non-degenerate distribution of your estimator, i.e. $d_n(\hat{\theta}_n \theta)$ converges to a non-degenerate distribution.
- (iii) Suppose that we impose a normal prior $\theta \sim N(0, \tau)$, where $\tau > 0$ is an known constant. Find the posterior distribution of θ given data X_1, \dots, X_n .

Solution

- (i) Since $\mathbb{E}[X_i] = \theta/i$, we have $\hat{\theta}_n := \sum_{i=1}^n i \cdot X_i/n$ is an unbiased estimator for θ .
- (ii) We have $\hat{\theta}_n \sim \mathcal{N}(\theta, \sum_{i=1}^n i^2/n^2)$. Thus,

$$\frac{\hat{\theta}_n - \theta}{\sqrt{\sum_{i=1}^n i^2/n^2}} \xrightarrow{\mathsf{d}} \mathcal{N}(0,1).$$

(iii) We have

$$\pi(\theta|X_1, \dots, X_n) \propto \pi(\theta)L(X_1, \dots, X_n|\theta)$$

$$\propto e^{-\theta^2/(2\tau)} \cdot \exp\left(-\frac{\sum_{i=1}^n (X_i - \theta/i)^2}{2}\right)$$

$$\propto \exp\left(-\frac{\theta^2}{2}\left(\frac{1}{\tau} + \sum_{i=1}^n \frac{1}{i^2}\right) + \theta\sum_{i=1}^n X_i/i\right).$$

Completing the square in terms of θ on the RHS, we have

$$\theta|X_1,\ldots,X_n \sim \mathcal{N}\left(\frac{\sum_{i=1}^n X_i/i}{1/\tau + \sum_{i=1}^n 1/i^2}, \left(1/\tau + \sum_{i=1}^n 1/i^2\right)^{-1}\right).$$

Problem 14 (2021 Sept, # 4). Suppose $\{U_i\}_{i\geq 1}\overset{\text{i.i.d.}}{\sim}U(0,\theta)$, for some $\theta>0$.

- 1. Show that $T_n := \left(\prod_{i=1}^n U_i\right)^{1/n}$ converges in probability to a constant, and find this constant.
- 2. Find a function of T_n that is a consistent estimator for θ .
- 3. Find constants a_n and b_n such that $a_n(T_n b_n)$ converges to a non-degenerate distribution.

(1) We have $\log(T_n) = \frac{1}{n} \sum_{i=1}^n \log(U_i)$ which goes to $\mathbb{E}[\log(U_i)]$ by law of large numbers. More explicitly, this expectation is

$$\int_0^\theta \frac{\log(u)}{\theta} du = \frac{u \log(u) - u}{\theta} \bigg|_0^\theta = \log(\theta) - 1.$$

Thus, $T_n \xrightarrow{\mathsf{P}} \exp(\log(\theta) - 1)$.

- (2) By inverting the formula in (1), we have $\exp(\log(T_n) + 1)$ is a consistent estimator for θ .
- (3) Since $\sqrt{n}(\log(T_n) (\log(\theta) 1))$ goes to a normal distribution by CLT, we have by Delta method that

$$\sqrt{n}(T_n - \exp(\log(\theta) - 1)),$$

goes to a non-degenerate distribution where we know the variance term is positive since $\frac{\partial}{\partial \theta} \exp(\log(\theta) - 1) > 0$ for all $\theta > 0$.